Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  a9e2nd Unicode version

Theorem a9e2nd 27697
Description: If at least two sets exist (dtru 4201) , then the same is true expressed in an alternate form similar to the form of a9e 1891. a9e2nd 27697 is derived from a9e2ndVD 28057. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a9e2nd  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Distinct variable groups:    x, u    y, u    x, v

Proof of Theorem a9e2nd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . 7  |-  u  e. 
_V
2 a9e 1891 . . . . . . 7  |-  E. y 
y  =  v
31, 2pm3.2i 441 . . . . . 6  |-  ( u  e.  _V  /\  E. y  y  =  v
)
4 19.42v 1846 . . . . . . 7  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  ( u  e.  _V  /\  E. y 
y  =  v ) )
54biimpri 197 . . . . . 6  |-  ( ( u  e.  _V  /\  E. y  y  =  v )  ->  E. y
( u  e.  _V  /\  y  =  v ) )
63, 5ax-mp 8 . . . . 5  |-  E. y
( u  e.  _V  /\  y  =  v )
7 isset 2792 . . . . . . 7  |-  ( u  e.  _V  <->  E. x  x  =  u )
87anbi1i 676 . . . . . 6  |-  ( ( u  e.  _V  /\  y  =  v )  <->  ( E. x  x  =  u  /\  y  =  v ) )
98exbii 1569 . . . . 5  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  E. y
( E. x  x  =  u  /\  y  =  v ) )
106, 9mpbi 199 . . . 4  |-  E. y
( E. x  x  =  u  /\  y  =  v )
11 id 19 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  -.  A. x  x  =  y )
12 hbnae 1895 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
13 hbn1 1704 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
14 ax-17 1603 . . . . . . . . . . . . . . . 16  |-  ( z  =  v  ->  A. x  z  =  v )
15 ax-17 1603 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  A. z 
y  =  v )
16 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  z  =  y )
17 equequ1 1648 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
1816, 17syl 15 . . . . . . . . . . . . . . . . 17  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
1918idi 2 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
2014, 15, 19dvelimh 1904 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2111, 20syl 15 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2221idi 2 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2322alimi 1546 . . . . . . . . . . . 12  |-  ( A. x  -.  A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2413, 23syl 15 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2511, 24syl 15 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
26 19.41rg 27689 . . . . . . . . . 10  |-  ( A. x ( y  =  v  ->  A. x  y  =  v )  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
2725, 26syl 15 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) )
2827idi 2 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) )
2928alimi 1546 . . . . . . 7  |-  ( A. y  -.  A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3012, 29syl 15 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3111, 30syl 15 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
32 exim 1562 . . . . 5  |-  ( A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) )  ->  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )
3331, 32syl 15 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )
34 pm2.27 35 . . . 4  |-  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  ( ( E. y
( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x ( x  =  u  /\  y  =  v )
)  ->  E. y E. x ( x  =  u  /\  y  =  v ) ) )
3510, 33, 34mpsyl 59 . . 3  |-  ( -. 
A. x  x  =  y  ->  E. y E. x ( x  =  u  /\  y  =  v ) )
36 excomim 1785 . . 3  |-  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. x E. y
( x  =  u  /\  y  =  v ) )
3735, 36syl 15 . 2  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
3837idi 2 1  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1684   _Vcvv 2788
This theorem is referenced by:  a9e2ndeq  27698  a9e2ndeqVD  28058  a9e2ndeqALT  28081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-v 2790
  Copyright terms: Public domain W3C validator