Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  a9e2ndALT Unicode version

Theorem a9e2ndALT 28707
Description: If at least two sets exist (dtru 4201) , then the same is true expressed in an alternate form similar to the form of a9e 1891. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in a9e2ndVD 28684. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a9e2ndALT  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Distinct variable groups:    x, u    y, u    x, v

Proof of Theorem a9e2ndALT
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . 7  |-  u  e. 
_V
2 a9e 1891 . . . . . . 7  |-  E. y 
y  =  v
31, 2pm3.2i 441 . . . . . 6  |-  ( u  e.  _V  /\  E. y  y  =  v
)
4 19.42v 1846 . . . . . . 7  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  ( u  e.  _V  /\  E. y 
y  =  v ) )
54biimpri 197 . . . . . 6  |-  ( ( u  e.  _V  /\  E. y  y  =  v )  ->  E. y
( u  e.  _V  /\  y  =  v ) )
63, 5ax-mp 8 . . . . 5  |-  E. y
( u  e.  _V  /\  y  =  v )
7 isset 2792 . . . . . . 7  |-  ( u  e.  _V  <->  E. x  x  =  u )
87anbi1i 676 . . . . . 6  |-  ( ( u  e.  _V  /\  y  =  v )  <->  ( E. x  x  =  u  /\  y  =  v ) )
98exbii 1569 . . . . 5  |-  ( E. y ( u  e. 
_V  /\  y  =  v )  <->  E. y
( E. x  x  =  u  /\  y  =  v ) )
106, 9mpbi 199 . . . 4  |-  E. y
( E. x  x  =  u  /\  y  =  v )
11 id 19 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  -.  A. x  x  =  y )
12 hbnae 1895 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
13 hbn1 1704 . . . . . . . . . . . 12  |-  ( -. 
A. x  x  =  y  ->  A. x  -.  A. x  x  =  y )
14 ax-17 1603 . . . . . . . . . . . . . . . 16  |-  ( z  =  v  ->  A. x  z  =  v )
15 ax-17 1603 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  A. z 
y  =  v )
16 id 19 . . . . . . . . . . . . . . . . 17  |-  ( z  =  y  ->  z  =  y )
17 equequ1 1648 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
1817a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( z  =  y  -> 
z  =  y )  ->  ( z  =  y  ->  ( z  =  v  <->  y  =  v ) ) )
1916, 18ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  (
z  =  v  <->  y  =  v ) )
2014, 15, 19dvelimh 1904 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2111, 20syl 15 . . . . . . . . . . . . . 14  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2221idi 2 . . . . . . . . . . . . 13  |-  ( -. 
A. x  x  =  y  ->  ( y  =  v  ->  A. x  y  =  v )
)
2322alimi 1546 . . . . . . . . . . . 12  |-  ( A. x  -.  A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2413, 23syl 15 . . . . . . . . . . 11  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
2511, 24syl 15 . . . . . . . . . 10  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  v  ->  A. x  y  =  v ) )
26 19.41rg 28316 . . . . . . . . . 10  |-  ( A. x ( y  =  v  ->  A. x  y  =  v )  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
2725, 26syl 15 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) )
2827idi 2 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) ) )
2928alimi 1546 . . . . . . 7  |-  ( A. y  -.  A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3012, 29syl 15 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
3111, 30syl 15 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  A. y
( ( E. x  x  =  u  /\  y  =  v )  ->  E. x ( x  =  u  /\  y  =  v ) ) )
32 exim 1562 . . . . 5  |-  ( A. y ( ( E. x  x  =  u  /\  y  =  v )  ->  E. x
( x  =  u  /\  y  =  v ) )  ->  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )
3331, 32syl 15 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )
34 pm3.35 570 . . . 4  |-  ( ( E. y ( E. x  x  =  u  /\  y  =  v )  /\  ( E. y ( E. x  x  =  u  /\  y  =  v )  ->  E. y E. x
( x  =  u  /\  y  =  v ) ) )  ->  E. y E. x ( x  =  u  /\  y  =  v )
)
3510, 33, 34sylancr 644 . . 3  |-  ( -. 
A. x  x  =  y  ->  E. y E. x ( x  =  u  /\  y  =  v ) )
36 excomim 1785 . . 3  |-  ( E. y E. x ( x  =  u  /\  y  =  v )  ->  E. x E. y
( x  =  u  /\  y  =  v ) )
3735, 36syl 15 . 2  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
3837idi 2 1  |-  ( -. 
A. x  x  =  y  ->  E. x E. y ( x  =  u  /\  y  =  v ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-v 2790
  Copyright terms: Public domain W3C validator