MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou Unicode version

Theorem aaliou 19718
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 
F in integer coefficients, is not approximable beyond order  N  = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aaliou  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aaliou
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem6 19717 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
7 rphalfcl 10378 . . . . 5  |-  ( a  e.  RR+  ->  ( a  /  2 )  e.  RR+ )
87adantl 452 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( a  /  2 )  e.  RR+ )
97ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR+ )
10 nnrp 10363 . . . . . . . . . . . . . 14  |-  ( q  e.  NN  ->  q  e.  RR+ )
1110ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
123nnzd 10116 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
1312ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1411, 13rpexpcld 11268 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
159, 14rpdivcld 10407 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR+ )
1615rpred 10390 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  e.  RR )
17 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
1817, 14rpdivcld 10407 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
1918rpred 10390 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
204adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  RR+ )  ->  A  e.  RR )
21 znq 10320 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
22 qre 10321 . . . . . . . . . . . . . 14  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2321, 22syl 15 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
24 resubcl 9111 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( p  /  q
)  e.  RR )  ->  ( A  -  ( p  /  q
) )  e.  RR )
2520, 23, 24syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2625recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2726abscld 11918 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2816, 19, 273jca 1132 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
299rpred 10390 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  e.  RR )
30 rpre 10360 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  a  e.  RR )
3130ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
32 rphalflt 10380 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  ->  ( a  /  2 )  < 
a )
3332ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  2 )  < 
a )
3429, 31, 14, 33ltdiv1dd 10443 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) ) )
3534anim1i 551 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( a  / 
2 )  /  (
q ^ N ) )  <  ( a  /  ( q ^ N ) )  /\  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
3635ex 423 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
( a  /  2
)  /  ( q ^ N ) )  <  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
37 ltletr 8913 . . . . . . . . 9  |-  ( ( ( ( a  / 
2 )  /  (
q ^ N ) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( ( a  /  2 )  /  ( q ^ N ) )  < 
( a  /  (
q ^ N ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( a  /  2
)  /  ( q ^ N ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
3828, 36, 37sylsyld 52 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
3938orim2d 813 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4039anassrs 629 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( ( a  / 
2 )  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) )
4140ralimdva 2621 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) )  ->  A. q  e.  NN  ( A  =  (
p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
4241ralimdva 2621 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
43 oveq1 5865 . . . . . . . 8  |-  ( x  =  ( a  / 
2 )  ->  (
x  /  ( q ^ N ) )  =  ( ( a  /  2 )  / 
( q ^ N
) ) )
4443breq1d 4033 . . . . . . 7  |-  ( x  =  ( a  / 
2 )  ->  (
( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) )  <->  ( (
a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
4544orbi2d 682 . . . . . 6  |-  ( x  =  ( a  / 
2 )  ->  (
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) )  <-> 
( A  =  ( p  /  q )  \/  ( ( a  /  2 )  / 
( q ^ N
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
46452ralbidv 2585 . . . . 5  |-  ( x  =  ( a  / 
2 )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4746rspcev 2884 . . . 4  |-  ( ( ( a  /  2
)  e.  RR+  /\  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( a  /  2 )  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
488, 42, 47ee12an 1353 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
4948rexlimdva 2667 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
506, 49mpd 14 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   QQcq 10316   RR+crp 10354   ^cexp 11104   abscabs 11719  Polycply 19566  degcdgr 19569
This theorem is referenced by:  aaliou2  19720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-cntz 14793  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-subrg 15543  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-0p 19025  df-limc 19216  df-dv 19217  df-dvn 19218  df-cpn 19219  df-ply 19570  df-idp 19571  df-coe 19572  df-dgr 19573  df-quot 19671
  Copyright terms: Public domain W3C validator