MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Unicode version

Theorem aaliou3lem7 19745
Description: Lemma for aaliou3 19747. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem7  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Distinct variable groups:    a, b,
c    F, b, c    L, c    A, a, b, c
Allowed substitution hints:    F( a)    H( a, b, c)    L( a, b)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 9774 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
2 eqid 2296 . . . 4  |-  ( c  e.  ( ZZ>= `  ( A  +  1 ) )  |->  ( ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) )  x.  ( ( 1  /  2 ) ^
( c  -  ( A  +  1 ) ) ) ) )  =  ( c  e.  ( ZZ>= `  ( A  +  1 ) ) 
|->  ( ( 2 ^
-u ( ! `  ( A  +  1
) ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  ( A  +  1 ) ) ) ) )
3 aaliou3lem.c . . . 4  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
42, 3aaliou3lem3 19740 . . 3  |-  ( ( A  +  1 )  e.  NN  ->  (  seq  ( A  +  1 ) (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
5 3simpc 954 . . 3  |-  ( (  seq  ( A  + 
1 ) (  +  ,  F )  e. 
dom 
~~>  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
61, 4, 53syl 18 . 2  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
7 nncn 9770 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  CC )
8 ax-1cn 8811 . . . . . . . . . . . 12  |-  1  e.  CC
9 pncan 9073 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
107, 8, 9sylancl 643 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( A  +  1 )  -  1 )  =  A )
1110oveq2d 5890 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( ( A  +  1 )  - 
1 ) )  =  ( 1 ... A
) )
1211sumeq1d 12190 . . . . . . . . 9  |-  ( A  e.  NN  ->  sum_ b  e.  ( 1 ... (
( A  +  1 )  -  1 ) ) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
1312oveq1d 5889 . . . . . . . 8  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( 1 ... ( ( A  +  1 )  - 
1 ) ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  ( sum_ b  e.  ( 1 ... A ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) ) )
14 nnuz 10279 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
15 eqid 2296 . . . . . . . . 9  |-  ( ZZ>= `  ( A  +  1
) )  =  (
ZZ>= `  ( A  + 
1 ) )
16 eqidd 2297 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  =  ( F `
 b ) )
17 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( ! `  a )  =  ( ! `  b ) )
1817negeqd 9062 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  -u ( ! `  a )  =  -u ( ! `  b ) )
1918oveq2d 5890 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
2 ^ -u ( ! `  a )
)  =  ( 2 ^ -u ( ! `
 b ) ) )
20 ovex 5899 . . . . . . . . . . . 12  |-  ( 2 ^ -u ( ! `
 b ) )  e.  _V
2119, 3, 20fvmpt 5618 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  ( F `  b )  =  ( 2 ^
-u ( ! `  b ) ) )
22 2rp 10375 . . . . . . . . . . . . 13  |-  2  e.  RR+
23 nnnn0 9988 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN  ->  b  e.  NN0 )
24 faccl 11314 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN0  ->  ( ! `
 b )  e.  NN )
2523, 24syl 15 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  ( ! `  b )  e.  NN )
2625nnzd 10132 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  ( ! `  b )  e.  ZZ )
2726znegcld 10135 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  -u ( ! `  b )  e.  ZZ )
28 rpexpcl 11138 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  -u ( ! `  b )  e.  ZZ )  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
2922, 27, 28sylancr 644 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
3029rpcnd 10408 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  CC )
3121, 30eqeltrd 2370 . . . . . . . . . 10  |-  ( b  e.  NN  ->  ( F `  b )  e.  CC )
3231adantl 452 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  e.  CC )
33 1nn 9773 . . . . . . . . . 10  |-  1  e.  NN
34 eqid 2296 . . . . . . . . . . . 12  |-  ( c  e.  ( ZZ>= `  1
)  |->  ( ( 2 ^ -u ( ! `
 1 ) )  x.  ( ( 1  /  2 ) ^
( c  -  1 ) ) ) )  =  ( c  e.  ( ZZ>= `  1 )  |->  ( ( 2 ^
-u ( ! ` 
1 ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  1 ) ) ) )
3534, 3aaliou3lem3 19740 . . . . . . . . . . 11  |-  ( 1  e.  NN  ->  (  seq  1 (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  1 ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  1 )
( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! ` 
1 ) ) ) ) )
3635simp1d 967 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  seq  1 (  +  ,  F )  e.  dom  ~~>  )
3733, 36mp1i 11 . . . . . . . . 9  |-  ( A  e.  NN  ->  seq  1 (  +  ,  F )  e.  dom  ~~>  )
3814, 15, 1, 16, 32, 37isumsplit 12315 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  NN  ( F `  b )  =  (
sum_ b  e.  ( 1 ... ( ( A  +  1 )  -  1 ) ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
39 oveq2 5882 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
1 ... c )  =  ( 1 ... A
) )
4039sumeq1d 12190 . . . . . . . . . 10  |-  ( c  =  A  ->  sum_ b  e.  ( 1 ... c
) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
41 aaliou3lem.e . . . . . . . . . 10  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
42 sumex 12176 . . . . . . . . . 10  |-  sum_ b  e.  ( 1 ... A
) ( F `  b )  e.  _V
4340, 41, 42fvmpt 5618 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( H `  A )  =  sum_ b  e.  ( 1 ... A ) ( F `  b
) )
4443oveq1d 5889 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  (
sum_ b  e.  ( 1 ... A ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
4513, 38, 443eqtr4rd 2339 . . . . . . 7  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  sum_ b  e.  NN  ( F `  b )
)
46 aaliou3lem.d . . . . . . 7  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4745, 46syl6eqr 2346 . . . . . 6  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  L )
483, 46, 41aaliou3lem4 19742 . . . . . . . . 9  |-  L  e.  RR
4948recni 8865 . . . . . . . 8  |-  L  e.  CC
5049a1i 10 . . . . . . 7  |-  ( A  e.  NN  ->  L  e.  CC )
513, 46, 41aaliou3lem5 19743 . . . . . . . 8  |-  ( A  e.  NN  ->  ( H `  A )  e.  RR )
5251recnd 8877 . . . . . . 7  |-  ( A  e.  NN  ->  ( H `  A )  e.  CC )
534simp2d 968 . . . . . . . . 9  |-  ( ( A  +  1 )  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
541, 53syl 15 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
5554rpcnd 10408 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  CC )
5650, 52, 55subaddd 9191 . . . . . 6  |-  ( A  e.  NN  ->  (
( L  -  ( H `  A )
)  =  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <->  ( ( H `
 A )  + 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  L ) )
5747, 56mpbird 223 . . . . 5  |-  ( A  e.  NN  ->  ( L  -  ( H `  A ) )  = 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )
5857eqcomd 2301 . . . 4  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  =  ( L  -  ( H `  A ) ) )
59 eleq1 2356 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+ 
<->  ( L  -  ( H `  A )
)  e.  RR+ )
)
60 breq1 4042 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
6159, 60anbi12d 691 . . . 4  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6258, 61syl 15 . . 3  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6351adantr 451 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  e.  RR )
64 simprl 732 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  e.  RR+ )
65 difrp 10403 . . . . . . . 8  |-  ( ( ( H `  A
)  e.  RR  /\  L  e.  RR )  ->  ( ( H `  A )  <  L  <->  ( L  -  ( H `
 A ) )  e.  RR+ ) )
6663, 48, 65sylancl 643 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  < 
L  <->  ( L  -  ( H `  A ) )  e.  RR+ )
)
6764, 66mpbird 223 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  <  L
)
6863, 67ltned 8971 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  =/=  L
)
69 nnnn0 9988 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN  ->  ( A  +  1 )  e.  NN0 )
70 faccl 11314 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN0  ->  ( ! `
 ( A  + 
1 ) )  e.  NN )
711, 69, 703syl 18 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  NN )
7271nnzd 10132 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  ZZ )
7372znegcld 10135 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  -u ( ! `  ( A  +  1 ) )  e.  ZZ )
74 rpexpcl 11138 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( A  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
7522, 73, 74sylancr 644 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
76 rpmulcl 10391 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7722, 75, 76sylancr 644 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  e.  RR+ )
7877adantr 451 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7978rpred 10406 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR )
8063, 79resubcld 9227 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  e.  RR )
8148a1i 10 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  e.  RR )
8263, 78ltsubrpd 10434 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
( H `  A
) )
8380, 63, 81, 82, 67lttrd 8993 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
L )
8480, 81, 83ltled 8983 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L )
85 simprr 733 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )
8681, 63, 79lesubadd2d 9387 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  L  <_  ( ( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
8785, 86mpbid 201 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
8881, 63, 79absdifled 11933 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  <->  ( ( ( H `  A )  -  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L  /\  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) ) )
8984, 87, 88mpbir2and 888 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )
9068, 89jca 518 . . . 4  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  =/= 
L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) )
9190ex 423 . . 3  |-  ( A  e.  NN  ->  (
( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  -> 
( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) ) )
9262, 91sylbid 206 . 2  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) ) )
936, 92mpd 14 1  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798    seq cseq 11062   ^cexp 11120   !cfa 11304   abscabs 11735    ~~> cli 11974   sum_csu 12174
This theorem is referenced by:  aaliou3lem9  19746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ioc 10677  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175
  Copyright terms: Public domain W3C validator