MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Unicode version

Theorem aaliou3lem9 19730
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem9  |-  -.  L  e.  AA
Distinct variable groups:    a, b,
c    F, b, c    L, c, a, b
Allowed substitution hints:    F( a)    H( a, b, c)

Proof of Theorem aaliou3lem9
Dummy variables  d 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 19725 . . . . . 6  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. e  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) )
2 aaliou3lem.c . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
3 aaliou3lem.d . . . . . . . . . . 11  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4 aaliou3lem.e . . . . . . . . . . 11  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
52, 3, 4aaliou3lem6 19728 . . . . . . . . . 10  |-  ( e  e.  NN  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
65ad2antrl 708 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  ZZ )
7 2nn 9877 . . . . . . . . . 10  |-  2  e.  NN
8 nnnn0 9972 . . . . . . . . . . . 12  |-  ( e  e.  NN  ->  e  e.  NN0 )
98ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  e  e.  NN0 )
10 faccl 11298 . . . . . . . . . . 11  |-  ( e  e.  NN0  ->  ( ! `
 e )  e.  NN )
11 nnnn0 9972 . . . . . . . . . . 11  |-  ( ( ! `  e )  e.  NN  ->  ( ! `  e )  e.  NN0 )
129, 10, 113syl 18 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  e )  e.  NN0 )
13 nnexpcl 11116 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( ! `  e )  e.  NN0 )  -> 
( 2 ^ ( ! `  e )
)  e.  NN )
147, 12, 13sylancr 644 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  NN )
152, 3, 4aaliou3lem5 19727 . . . . . . . . . . . . . . 15  |-  ( e  e.  NN  ->  ( H `  e )  e.  RR )
1615ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  RR )
1716recnd 8861 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  e.  CC )
1814nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  CC )
1914nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  =/=  0 )
2017, 18, 19divcan4d 9542 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =  ( H `  e ) )
212, 3, 4aaliou3lem7 19729 . . . . . . . . . . . . . 14  |-  ( e  e.  NN  ->  (
( H `  e
)  =/=  L  /\  ( abs `  ( L  -  ( H `  e ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( e  +  1 ) ) ) ) ) )
2221simpld 445 . . . . . . . . . . . . 13  |-  ( e  e.  NN  ->  ( H `  e )  =/=  L )
2322ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( H `  e )  =/=  L )
2420, 23eqnetrd 2464 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  =/=  L )
2524necomd 2529 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  L  =/=  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )
2625neneqd 2462 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )
272, 3, 4aaliou3lem4 19726 . . . . . . . . . . . . . 14  |-  L  e.  RR
2814nnred 9761 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ ( ! `
 e ) )  e.  RR )
2916, 28remulcld 8863 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  e.  RR )
3029, 14nndivred 9794 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) )  e.  RR )
31 resubcl 9111 . . . . . . . . . . . . . 14  |-  ( ( L  e.  RR  /\  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  e.  RR )  ->  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) )  e.  RR )
3227, 30, 31sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  RR )
3332recnd 8861 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  e.  CC )
3433abscld 11918 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  e.  RR )
35 2rp 10359 . . . . . . . . . . . . 13  |-  2  e.  RR+
36 peano2nn0 10004 . . . . . . . . . . . . . . . 16  |-  ( e  e.  NN0  ->  ( e  +  1 )  e. 
NN0 )
37 faccl 11298 . . . . . . . . . . . . . . . 16  |-  ( ( e  +  1 )  e.  NN0  ->  ( ! `
 ( e  +  1 ) )  e.  NN )
389, 36, 373syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( ! `  ( e  +  1 ) )  e.  NN )
39 nnz 10045 . . . . . . . . . . . . . . 15  |-  ( ( ! `  ( e  +  1 ) )  e.  NN  ->  ( ! `  ( e  +  1 ) )  e.  ZZ )
40 znegcl 10055 . . . . . . . . . . . . . . 15  |-  ( ( ! `  ( e  +  1 ) )  e.  ZZ  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
4138, 39, 403syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -u ( ! `  ( e  +  1 ) )  e.  ZZ )
42 rpexpcl 11122 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( e  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
4335, 41, 42sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )
44 rpmulcl 10375 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( e  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  e.  RR+ )
4535, 43, 44sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR+ )
4645rpred 10390 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  e.  RR )
47 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  b  e.  RR+ )
48 nnnn0 9972 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN  ->  a  e.  NN0 )
4948ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  a  e.  NN0 )
5014, 49nnexpcld 11266 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  NN )
5150nnrpd 10389 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( 2 ^ ( ! `  e )
) ^ a )  e.  RR+ )
5247, 51rpdivcld 10407 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR+ )
5352rpred 10390 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  e.  RR )
5420oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) )  =  ( L  -  ( H `  e ) ) )
5554fveq2d 5529 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  =  ( abs `  ( L  -  ( H `  e ) ) ) )
5621simprd 449 . . . . . . . . . . . . 13  |-  ( e  e.  NN  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5756ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( H `  e ) ) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) ) )
5855, 57eqbrtrd 4043 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) ) )
59 simprr 733 . . . . . . . . . . 11  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( e  +  1 ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) ) )
6034, 46, 53, 58, 59letrd 8973 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )  <_ 
( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) ) )
6134, 53lenltd 8965 . . . . . . . . . 10  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  (
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) )  <_  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
6260, 61mpbid 201 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) )
63 oveq1 5865 . . . . . . . . . . . . 13  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
f  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
d ) )
6463eqeq2d 2294 . . . . . . . . . . . 12  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  =  ( f  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6564notbid 285 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  L  =  (
f  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )
6663oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( L  -  ( f  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )
6766fveq2d 5529 . . . . . . . . . . . . 13  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( abs `  ( L  -  ( f  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )
6867breq2d 4035 . . . . . . . . . . . 12  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
6968notbid 285 . . . . . . . . . . 11  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) )  <->  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) ) )
7065, 69anbi12d 691 . . . . . . . . . 10  |-  ( f  =  ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  ->  (
( -.  L  =  ( f  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) ) ) ) )
71 oveq2 5866 . . . . . . . . . . . . 13  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  =  ( ( ( H `  e )  x.  ( 2 ^ ( ! `  e
) ) )  / 
( 2 ^ ( ! `  e )
) ) )
7271eqeq2d 2294 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d )  <->  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7372notbid 285 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d )  <->  -.  L  =  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) )
74 oveq1 5865 . . . . . . . . . . . . . 14  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
d ^ a )  =  ( ( 2 ^ ( ! `  e ) ) ^
a ) )
7574oveq2d 5874 . . . . . . . . . . . . 13  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
b  /  ( d ^ a ) )  =  ( b  / 
( ( 2 ^ ( ! `  e
) ) ^ a
) ) )
7671oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) )  =  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) ) ) )
7776fveq2d 5529 . . . . . . . . . . . . 13  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( abs `  ( L  -  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
) ) )  =  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) )
7875, 77breq12d 4036 . . . . . . . . . . . 12  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  ( b  /  ( ( 2 ^ ( ! `  e ) ) ^
a ) )  < 
( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
7978notbid 285 . . . . . . . . . . 11  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  ( -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  d ) ) )  <->  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )
8073, 79anbi12d 691 . . . . . . . . . 10  |-  ( d  =  ( 2 ^ ( ! `  e
) )  ->  (
( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  d
)  /\  -.  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  d ) ) ) )  <->  ( -.  L  =  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) )  /\  -.  ( b  /  (
( 2 ^ ( ! `  e )
) ^ a ) )  <  ( abs `  ( L  -  (
( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  /  ( 2 ^ ( ! `  e ) ) ) ) ) ) ) )
8170, 80rspc2ev 2892 . . . . . . . . 9  |-  ( ( ( ( H `  e )  x.  (
2 ^ ( ! `
 e ) ) )  e.  ZZ  /\  ( 2 ^ ( ! `  e )
)  e.  NN  /\  ( -.  L  =  ( ( ( H `
 e )  x.  ( 2 ^ ( ! `  e )
) )  /  (
2 ^ ( ! `
 e ) ) )  /\  -.  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  <  ( abs `  ( L  -  ( (
( H `  e
)  x.  ( 2 ^ ( ! `  e ) ) )  /  ( 2 ^ ( ! `  e
) ) ) ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
826, 14, 26, 62, 81syl112anc 1186 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  b  e.  RR+ )  /\  ( e  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) ) ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  ( f  / 
d )  /\  -.  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
8382exp32 588 . . . . . . 7  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  -> 
( e  e.  NN  ->  ( ( 2  x.  ( 2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) ) ) )
8483rexlimdv 2666 . . . . . 6  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  -> 
( E. e  e.  NN  ( 2  x.  ( 2 ^ -u ( ! `  ( e  +  1 ) ) ) )  <_  (
b  /  ( ( 2 ^ ( ! `
 e ) ) ^ a ) )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) ) )
851, 84mpd 14 . . . . 5  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
86 pm4.56 481 . . . . . . . . 9  |-  ( ( -.  L  =  ( f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
8786rexbii 2568 . . . . . . . 8  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. d  e.  NN  -.  ( L  =  ( f  / 
d )  \/  (
b  /  ( d ^ a ) )  <  ( abs `  ( L  -  ( f  /  d ) ) ) ) )
88 rexnal 2554 . . . . . . . 8  |-  ( E. d  e.  NN  -.  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) )  <->  -.  A. d  e.  NN  ( L  =  (
f  /  d )  \/  ( b  / 
( d ^ a
) )  <  ( abs `  ( L  -  ( f  /  d
) ) ) ) )
8987, 88bitri 240 . . . . . . 7  |-  ( E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9089rexbii 2568 . . . . . 6  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
91 rexnal 2554 . . . . . 6  |-  ( E. f  e.  ZZ  -.  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9290, 91bitri 240 . . . . 5  |-  ( E. f  e.  ZZ  E. d  e.  NN  ( -.  L  =  (
f  /  d )  /\  -.  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )  <->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9385, 92sylib 188 . . . 4  |-  ( ( a  e.  NN  /\  b  e.  RR+ )  ->  -.  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9493nrexdv 2646 . . 3  |-  ( a  e.  NN  ->  -.  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) ) )
9594nrex 2645 . 2  |-  -.  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d
)  \/  ( b  /  ( d ^
a ) )  < 
( abs `  ( L  -  ( f  /  d ) ) ) )
96 aaliou2b 19721 . 2  |-  ( L  e.  AA  ->  E. a  e.  NN  E. b  e.  RR+  A. f  e.  ZZ  A. d  e.  NN  ( L  =  ( f  /  d )  \/  ( b  /  (
d ^ a ) )  <  ( abs `  ( L  -  (
f  /  d ) ) ) ) )
9795, 96mto 167 1  |-  -.  L  e.  AA
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   RR+crp 10354   ...cfz 10782   ^cexp 11104   !cfa 11288   abscabs 11719   sum_csu 12158   AAcaa 19694
This theorem is referenced by:  aaliou3  19731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-cntz 14793  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-subrg 15543  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-0p 19025  df-limc 19216  df-dv 19217  df-dvn 19218  df-cpn 19219  df-ply 19570  df-idp 19571  df-coe 19572  df-dgr 19573  df-quot 19671  df-aa 19695
  Copyright terms: Public domain W3C validator