MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Unicode version

Theorem aalioulem1 19728
Description: Lemma for aaliou 19734. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem1.b  |-  ( ph  ->  X  e.  ZZ )
aalioulem1.c  |-  ( ph  ->  Y  e.  NN )
Assertion
Ref Expression
aalioulem1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )

Proof of Theorem aalioulem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
2 aalioulem1.b . . . . . . 7  |-  ( ph  ->  X  e.  ZZ )
32zcnd 10134 . . . . . 6  |-  ( ph  ->  X  e.  CC )
4 aalioulem1.c . . . . . . 7  |-  ( ph  ->  Y  e.  NN )
54nncnd 9778 . . . . . 6  |-  ( ph  ->  Y  e.  CC )
64nnne0d 9806 . . . . . 6  |-  ( ph  ->  Y  =/=  0 )
73, 5, 6divcld 9552 . . . . 5  |-  ( ph  ->  ( X  /  Y
)  e.  CC )
8 eqid 2296 . . . . . 6  |-  (coeff `  F )  =  (coeff `  F )
9 eqid 2296 . . . . . 6  |-  (deg `  F )  =  (deg
`  F )
108, 9coeid2 19637 . . . . 5  |-  ( ( F  e.  (Poly `  ZZ )  /\  ( X  /  Y )  e.  CC )  ->  ( F `  ( X  /  Y ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
111, 7, 10syl2anc 642 . . . 4  |-  ( ph  ->  ( F `  ( X  /  Y ) )  =  sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
1211oveq1d 5889 . . 3  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  =  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) ) )
13 fzfid 11051 . . . 4  |-  ( ph  ->  ( 0 ... (deg `  F ) )  e. 
Fin )
14 dgrcl 19631 . . . . . 6  |-  ( F  e.  (Poly `  ZZ )  ->  (deg `  F
)  e.  NN0 )
151, 14syl 15 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
165, 15expcld 11261 . . . 4  |-  ( ph  ->  ( Y ^ (deg `  F ) )  e.  CC )
17 0z 10051 . . . . . . . 8  |-  0  e.  ZZ
188coef2 19629 . . . . . . . 8  |-  ( ( F  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  F ) : NN0 --> ZZ )
191, 17, 18sylancl 643 . . . . . . 7  |-  ( ph  ->  (coeff `  F ) : NN0 --> ZZ )
20 elfznn0 10838 . . . . . . 7  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  NN0 )
21 ffvelrn 5679 . . . . . . 7  |-  ( ( (coeff `  F ) : NN0 --> ZZ  /\  a  e.  NN0 )  ->  (
(coeff `  F ) `  a )  e.  ZZ )
2219, 20, 21syl2an 463 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  ZZ )
2322zcnd 10134 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  CC )
24 expcl 11137 . . . . . 6  |-  ( ( ( X  /  Y
)  e.  CC  /\  a  e.  NN0 )  -> 
( ( X  /  Y ) ^ a
)  e.  CC )
257, 20, 24syl2an 463 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  e.  CC )
2623, 25mulcld 8871 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  e.  CC )
2713, 16, 26fsummulc1 12263 . . 3  |-  ( ph  ->  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
2812, 27eqtrd 2328 . 2  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
295adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  CC )
3015adantr 451 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  NN0 )
3129, 30expcld 11261 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
(deg `  F )
)  e.  CC )
3223, 25, 31mulassd 8874 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  =  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) ) )
332adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  ZZ )
3433zcnd 10134 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  CC )
356adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  =/=  0
)
3620adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  NN0 )
3734, 29, 35, 36expdivd 11275 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  =  ( ( X ^ a
)  /  ( Y ^ a ) ) )
3837oveq1d 5889 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) ) )
3934, 36expcld 11261 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  CC )
40 nnexpcl 11132 . . . . . . . . . 10  |-  ( ( Y  e.  NN  /\  a  e.  NN0 )  -> 
( Y ^ a
)  e.  NN )
414, 20, 40syl2an 463 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  NN )
4241nncnd 9778 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  CC )
4341nnne0d 9806 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  =/=  0
)
4439, 42, 31, 43div13d 9576 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
4538, 44eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
46 elfzelz 10814 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  ZZ )
4746adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  ZZ )
4830nn0zd 10131 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  ZZ )
4929, 35, 47, 48expsubd 11272 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  =  ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) ) )
504adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  NN )
5150nnzd 10132 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  ZZ )
52 fznn0sub 10840 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  ( (deg `  F )  -  a
)  e.  NN0 )
5352adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (deg `  F )  -  a
)  e.  NN0 )
54 zexpcl 11134 . . . . . . . . 9  |-  ( ( Y  e.  ZZ  /\  ( (deg `  F )  -  a )  e. 
NN0 )  ->  ( Y ^ ( (deg `  F )  -  a
) )  e.  ZZ )
5551, 53, 54syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  e.  ZZ )
5649, 55eqeltrrd 2371 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( Y ^ (deg `  F
) )  /  ( Y ^ a ) )  e.  ZZ )
57 zexpcl 11134 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  a  e.  NN0 )  -> 
( X ^ a
)  e.  ZZ )
582, 20, 57syl2an 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  ZZ )
5956, 58zmulcld 10139 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) )  e.  ZZ )
6045, 59eqeltrd 2370 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  e.  ZZ )
6122, 60zmulcld 10139 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) )  e.  ZZ )
6232, 61eqeltrd 2370 . . 3  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
6313, 62fsumzcl 12224 . 2  |-  ( ph  -> 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) )  e.  ZZ )
6428, 63eqeltrd 2370 1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753    x. cmul 8758    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ...cfz 10798   ^cexp 11120   sum_csu 12174  Polycply 19582  coeffccoe 19584  degcdgr 19585
This theorem is referenced by:  aalioulem4  19731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-0p 19041  df-ply 19586  df-coe 19588  df-dgr 19589
  Copyright terms: Public domain W3C validator