MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Unicode version

Theorem aalioulem2 20207
Description: Lemma for aaliou 20212. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
aalioulem2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q
Allowed substitution hints:    N( x, q, p)

Proof of Theorem aalioulem2
Dummy variables  r 
a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 10576 . . . . . . 7  |-  1  e.  RR+
2 snssi 3906 . . . . . . 7  |-  ( 1  e.  RR+  ->  { 1 }  C_  RR+ )
31, 2ax-mp 8 . . . . . 6  |-  { 1 }  C_  RR+
4 ssrab2 3392 . . . . . 6  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  RR+
53, 4unssi 3486 . . . . 5  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+
6 ltso 9116 . . . . . . . 8  |-  <  Or  RR
7 cnvso 5374 . . . . . . . 8  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
86, 7mpbi 200 . . . . . . 7  |-  `'  <  Or  RR
98a1i 11 . . . . . 6  |-  ( ph  ->  `'  <  Or  RR )
10 snfi 7150 . . . . . . 7  |-  { 1 }  e.  Fin
11 aalioulem2.b . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
12 aalioulem2.c . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
1312nnne0d 10004 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
14 aalioulem2.a . . . . . . . . . . . . . 14  |-  N  =  (deg `  F )
1514eqcomi 2412 . . . . . . . . . . . . 13  |-  (deg `  F )  =  N
16 dgr0 20137 . . . . . . . . . . . . 13  |-  (deg ` 
0 p )  =  0
1713, 15, 163netr4g 2600 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  F )  =/=  (deg `  0 p
) )
18 fveq2 5691 . . . . . . . . . . . . 13  |-  ( F  =  0 p  -> 
(deg `  F )  =  (deg `  0 p
) )
1918necon3i 2610 . . . . . . . . . . . 12  |-  ( (deg
`  F )  =/=  (deg `  0 p
)  ->  F  =/=  0 p )
2017, 19syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  =/=  0 p )
21 eqid 2408 . . . . . . . . . . . 12  |-  ( `' F " { 0 } )  =  ( `' F " { 0 } )
2221fta1 20182 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  ZZ )  /\  F  =/=  0 p )  -> 
( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
2311, 20, 22syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
2423simpld 446 . . . . . . . . 9  |-  ( ph  ->  ( `' F " { 0 } )  e.  Fin )
25 abrexfi 7369 . . . . . . . . 9  |-  ( ( `' F " { 0 } )  e.  Fin  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
2624, 25syl 16 . . . . . . . 8  |-  ( ph  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
27 rabssab 3394 . . . . . . . 8  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }
28 ssfi 7292 . . . . . . . 8  |-  ( ( { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
2926, 27, 28sylancl 644 . . . . . . 7  |-  ( ph  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
30 unfi 7337 . . . . . . 7  |-  ( ( { 1 }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  e.  Fin )  ->  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin )
3110, 29, 30sylancr 645 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  e.  Fin )
32 1ex 9046 . . . . . . . . 9  |-  1  e.  _V
3332snid 3805 . . . . . . . 8  |-  1  e.  { 1 }
34 elun1 3478 . . . . . . . 8  |-  ( 1  e.  { 1 }  ->  1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
35 ne0i 3598 . . . . . . . 8  |-  ( 1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/) )
3633, 34, 35mp2b 10 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/)
3736a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/) )
38 rpssre 10582 . . . . . . . 8  |-  RR+  C_  RR
395, 38sstri 3321 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR
4039a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR )
41 fisupcl 7432 . . . . . 6  |-  ( ( `'  <  Or  RR  /\  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin  /\  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/)  /\  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
429, 31, 37, 40, 41syl13anc 1186 . . . . 5  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
435, 42sseldi 3310 . . . 4  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+ )
4439a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR )
45 0re 9051 . . . . . . . . . . . 12  |-  0  e.  RR
46 rpge0 10584 . . . . . . . . . . . . 13  |-  ( d  e.  RR+  ->  0  <_ 
d )
4746rgen 2735 . . . . . . . . . . . 12  |-  A. d  e.  RR+  0  <_  d
48 breq1 4179 . . . . . . . . . . . . . 14  |-  ( c  =  0  ->  (
c  <_  d  <->  0  <_  d ) )
4948ralbidv 2690 . . . . . . . . . . . . 13  |-  ( c  =  0  ->  ( A. d  e.  RR+  c  <_  d  <->  A. d  e.  RR+  0  <_  d ) )
5049rspcev 3016 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A. d  e.  RR+  0  <_  d )  ->  E. c  e.  RR  A. d  e.  RR+  c  <_  d )
5145, 47, 50mp2an 654 . . . . . . . . . . 11  |-  E. c  e.  RR  A. d  e.  RR+  c  <_  d
52 ssralv 3371 . . . . . . . . . . . . 13  |-  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+  ->  ( A. d  e.  RR+  c  <_  d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
)
535, 52ax-mp 8 . . . . . . . . . . . 12  |-  ( A. d  e.  RR+  c  <_ 
d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5453reximi 2777 . . . . . . . . . . 11  |-  ( E. c  e.  RR  A. d  e.  RR+  c  <_ 
d  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5551, 54ax-mp 8 . . . . . . . . . 10  |-  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d
5655a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
57 aalioulem2.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
5857ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  A  e.  RR )
59 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  RR )
6058, 59resubcld 9425 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  RR )
6160recnd 9074 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  CC )
6257ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  RR )
6362recnd 9074 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  CC )
64 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  RR )
6564recnd 9074 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  CC )
6663, 65subeq0ad 9381 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =  0  <-> 
A  =  r ) )
6766necon3abid 2604 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =/=  0  <->  -.  A  =  r ) )
6867biimprd 215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  ( A  -  r )  =/=  0 ) )
6968impr 603 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  =/=  0 )
7061, 69absrpcld 12209 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  RR+ )
7159recnd 9074 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  CC )
72 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( F `  r )  =  0 )
73 plyf 20074 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
7411, 73syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : CC --> CC )
75 ffn 5554 . . . . . . . . . . . . . . . 16  |-  ( F : CC --> CC  ->  F  Fn  CC )
7674, 75syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  CC )
7776ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  F  Fn  CC )
78 fniniseg 5814 . . . . . . . . . . . . . 14  |-  ( F  Fn  CC  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7977, 78syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
8071, 72, 79mpbir2and 889 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  ( `' F " { 0 } ) )
81 eqid 2408 . . . . . . . . . . . 12  |-  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) )
82 oveq2 6052 . . . . . . . . . . . . . . 15  |-  ( b  =  r  ->  ( A  -  b )  =  ( A  -  r ) )
8382fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( abs `  ( A  -  b ) )  =  ( abs `  ( A  -  r )
) )
8483eqeq2d 2419 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) )  <->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) ) ) )
8584rspcev 3016 . . . . . . . . . . . 12  |-  ( ( r  e.  ( `' F " { 0 } )  /\  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  r )
) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
8680, 81, 85sylancl 644 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
87 eqeq1 2414 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( a  =  ( abs `  ( A  -  b )
)  <->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8887rexbidv 2691 . . . . . . . . . . . 12  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) )  <->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  b ) ) ) )
8988elrab 3056 . . . . . . . . . . 11  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  <->  ( ( abs `  ( A  -  r ) )  e.  RR+  /\  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
9070, 86, 89sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e. 
{ a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )
91 elun2 3479 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
9290, 91syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
93 infmrlb 9949 . . . . . . . . 9  |-  ( ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR  /\  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d  /\  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9444, 56, 92, 93syl3anc 1184 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9594expr 599 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9695orrd 368 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) )
9796ex 424 . . . . 5  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9897ralrimiva 2753 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) ) )
99 breq1 4179 . . . . . . . 8  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( x  <_  ( abs `  ( A  -  r ) )  <->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
10099orbi2d 683 . . . . . . 7  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) )  <->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
101100imbi2d 308 . . . . . 6  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
102101ralbidv 2690 . . . . 5  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
103102rspcev 3016 . . . 4  |-  ( ( sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+  /\  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
10443, 98, 103syl2anc 643 . . 3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
105 znq 10538 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
106 qre 10539 . . . . . . . 8  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
107105, 106syl 16 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
108 fveq2 5691 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( F `  r )  =  ( F `  ( p  /  q
) ) )
109108eqeq1d 2416 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( F `  r
)  =  0  <->  ( F `  ( p  /  q ) )  =  0 ) )
110 eqeq2 2417 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( A  =  r  <->  A  =  ( p  /  q
) ) )
111 oveq2 6052 . . . . . . . . . . . 12  |-  ( r  =  ( p  / 
q )  ->  ( A  -  r )  =  ( A  -  ( p  /  q
) ) )
112111fveq2d 5695 . . . . . . . . . . 11  |-  ( r  =  ( p  / 
q )  ->  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  ( p  /  q ) ) ) )
113112breq2d 4188 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  (
x  <_  ( abs `  ( A  -  r
) )  <->  x  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
114110, 113orbi12d 691 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) )  <-> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
115109, 114imbi12d 312 . . . . . . . 8  |-  ( r  =  ( p  / 
q )  ->  (
( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  <->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
116115rspcv 3012 . . . . . . 7  |-  ( ( p  /  q )  e.  RR  ->  ( A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
117107, 116syl 16 . . . . . 6  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
118117com12 29 . . . . 5  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  ( (
p  e.  ZZ  /\  q  e.  NN )  ->  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
119118ralrimivv 2761 . . . 4  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
120119reximi 2777 . . 3  |-  ( E. x  e.  RR+  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
121104, 120syl 16 . 2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
122 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR+ )
123 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
12412nnnn0d 10234 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
125124ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
126123, 125nnexpcld 11503 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
127126nnrpd 10607 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
128122, 127rpdivcld 10625 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR+ )
129128rpred 10608 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR )
130129adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  e.  RR )
131 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR+ )
132131rpred 10608 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR )
13357ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
134107adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
135133, 134resubcld 9425 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
136135recnd 9074 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
137136abscld 12197 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
138137adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR )
139 rpre 10578 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
140139ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR )
141122rpcnne0d 10617 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  e.  CC  /\  x  =/=  0 ) )
142 divid 9665 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( x  /  x
)  =  1 )
143141, 142syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  =  1 )
144126nnge1d 10002 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( q ^ N ) )
145143, 144eqbrtrd 4196 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  <_  (
q ^ N ) )
146140, 122, 127, 145lediv23d 10665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  <_  x )
147146adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  x )
148 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
149130, 132, 138, 147, 148letrd 9187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
150149ex 424 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
151150orim2d 814 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
152151imim2d 50 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
153152anassrs 630 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
154153ralimdva 2748 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
155154ralimdva 2748 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
156155reximdva 2782 . 2  |-  ( ph  ->  ( E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
157121, 156mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2394    =/= wne 2571   A.wral 2670   E.wrex 2671   {crab 2674    u. cun 3282    C_ wss 3284   (/)c0 3592   {csn 3778   class class class wbr 4176    Or wor 4466   `'ccnv 4840   "cima 4844    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   Fincfn 7072   supcsup 7407   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951    < clt 9080    <_ cle 9081    - cmin 9251    / cdiv 9637   NNcn 9960   NN0cn0 10181   ZZcz 10242   QQcq 10534   RR+crp 10572   ^cexp 11341   #chash 11577   abscabs 11998   0 pc0p 19518  Polycply 20060  degcdgr 20063
This theorem is referenced by:  aalioulem6  20211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-pm 6984  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-oi 7439  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-q 10535  df-rp 10573  df-fz 11004  df-fzo 11095  df-fl 11161  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-clim 12241  df-rlim 12242  df-sum 12439  df-0p 19519  df-ply 20064  df-idp 20065  df-coe 20066  df-dgr 20067  df-quot 20165
  Copyright terms: Public domain W3C validator