MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Unicode version

Theorem aannenlem1 19724
Description: Lemma for aannen 19727. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
Assertion
Ref Expression
aannenlem1  |-  ( A  e.  NN0  ->  ( H `
 A )  e. 
Fin )
Distinct variable group:    A, a, b, c, d, e
Allowed substitution hints:    H( e, a, b, c, d)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 4043 . . . . . . 7  |-  ( a  =  A  ->  (
(deg `  d )  <_  a  <->  (deg `  d )  <_  A ) )
2 breq2 4043 . . . . . . . 8  |-  ( a  =  A  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_ 
a  <->  ( abs `  (
(coeff `  d ) `  e ) )  <_  A ) )
32ralbidv 2576 . . . . . . 7  |-  ( a  =  A  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a  <->  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) )
41, 33anbi23d 1255 . . . . . 6  |-  ( a  =  A  ->  (
( d  =/=  0 p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
)  <->  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) ) )
54rabbidv 2793 . . . . 5  |-  ( a  =  A  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  =  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) } )
65rexeqdv 2756 . . . 4  |-  ( a  =  A  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0  <->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 ) )
76rabbidv 2793 . . 3  |-  ( a  =  A  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 } )
8 aannenlem.a . . 3  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
9 cnex 8834 . . . 4  |-  CC  e.  _V
109rabex 4181 . . 3  |-  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }  e.  _V
117, 8, 10fvmpt 5618 . 2  |-  ( A  e.  NN0  ->  ( H `
 A )  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 } )
12 iunrab 3965 . . 3  |-  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }
13 fzfi 11050 . . . . . . 7  |-  ( -u A ... A )  e. 
Fin
14 fzfi 11050 . . . . . . 7  |-  ( 0 ... A )  e. 
Fin
15 mapfi 7168 . . . . . . 7  |-  ( ( ( -u A ... A )  e.  Fin  /\  ( 0 ... A
)  e.  Fin )  ->  ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  Fin )
1613, 14, 15mp2an 653 . . . . . 6  |-  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  Fin
1716a1i 10 . . . . 5  |-  ( A  e.  NN0  ->  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  Fin )
18 ovex 5899 . . . . . 6  |-  ( (
-u A ... A
)  ^m  ( 0 ... A ) )  e.  _V
19 neeq1 2467 . . . . . . . . . . 11  |-  ( d  =  a  ->  (
d  =/=  0 p  <-> 
a  =/=  0 p ) )
20 fveq2 5541 . . . . . . . . . . . 12  |-  ( d  =  a  ->  (deg `  d )  =  (deg
`  a ) )
2120breq1d 4049 . . . . . . . . . . 11  |-  ( d  =  a  ->  (
(deg `  d )  <_  A  <->  (deg `  a )  <_  A ) )
22 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( d  =  a  ->  (coeff `  d )  =  (coeff `  a ) )
2322fveq1d 5543 . . . . . . . . . . . . . 14  |-  ( d  =  a  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  a ) `  e ) )
2423fveq2d 5545 . . . . . . . . . . . . 13  |-  ( d  =  a  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  a ) `  e
) ) )
2524breq1d 4049 . . . . . . . . . . . 12  |-  ( d  =  a  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
2625ralbidv 2576 . . . . . . . . . . 11  |-  ( d  =  a  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )
2719, 21, 263anbi123d 1252 . . . . . . . . . 10  |-  ( d  =  a  ->  (
( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( a  =/=  0 p  /\  (deg `  a )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) ) )
2827elrab 2936 . . . . . . . . 9  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( a  e.  (Poly `  ZZ )  /\  ( a  =/=  0 p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) ) )
29 simp3 957 . . . . . . . . . 10  |-  ( ( a  =/=  0 p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
)  ->  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A )
3029anim2i 552 . . . . . . . . 9  |-  ( ( a  e.  (Poly `  ZZ )  /\  (
a  =/=  0 p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )  ->  (
a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
3128, 30sylbi 187 . . . . . . . 8  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A ) )
32 0z 10051 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
33 eqid 2296 . . . . . . . . . . . . . . . 16  |-  (coeff `  a )  =  (coeff `  a )
3433coef2 19629 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  a ) : NN0 --> ZZ )
3532, 34mpan2 652 . . . . . . . . . . . . . 14  |-  ( a  e.  (Poly `  ZZ )  ->  (coeff `  a
) : NN0 --> ZZ )
3635ad2antrl 708 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
) : NN0 --> ZZ )
37 ffn 5405 . . . . . . . . . . . . 13  |-  ( (coeff `  a ) : NN0 --> ZZ 
->  (coeff `  a )  Fn  NN0 )
3836, 37syl 15 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
)  Fn  NN0 )
3935adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  ->  (coeff `  a ) : NN0 --> ZZ )
4039ffvelrnda 5681 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
(coeff `  a ) `  e )  e.  ZZ )
4140zred 10133 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
(coeff `  a ) `  e )  e.  RR )
42 nn0re 9990 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  A  e.  RR )
4342ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  A  e.  RR )
4441, 43absled 11929 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A 
<->  ( -u A  <_ 
( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
45 nn0z 10062 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  NN0  ->  A  e.  ZZ )
4645ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  A  e.  ZZ )
4746znegcld 10135 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  -u A  e.  ZZ )
48 elfz 10804 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (coeff `  a
) `  e )  e.  ZZ  /\  -u A  e.  ZZ  /\  A  e.  ZZ )  ->  (
( (coeff `  a
) `  e )  e.  ( -u A ... A )  <->  ( -u A  <_  ( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
4940, 47, 46, 48syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( (coeff `  a
) `  e )  e.  ( -u A ... A )  <->  ( -u A  <_  ( (coeff `  a
) `  e )  /\  ( (coeff `  a
) `  e )  <_  A ) ) )
5044, 49bitr4d 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A 
<->  ( (coeff `  a
) `  e )  e.  ( -u A ... A ) ) )
5150biimpd 198 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  /\  e  e.  NN0 )  ->  (
( abs `  (
(coeff `  a ) `  e ) )  <_  A  ->  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) ) )
5251ralimdva 2634 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  a  e.  (Poly `  ZZ ) )  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A  ->  A. e  e.  NN0  ( (coeff `  a ) `  e )  e.  (
-u A ... A
) ) )
5352impr 602 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  A. e  e.  NN0  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) )
54 fnfvrnss 5703 . . . . . . . . . . . . 13  |-  ( ( (coeff `  a )  Fn  NN0  /\  A. e  e.  NN0  ( (coeff `  a ) `  e
)  e.  ( -u A ... A ) )  ->  ran  (coeff `  a
)  C_  ( -u A ... A ) )
5538, 53, 54syl2anc 642 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ran  (coeff `  a )  C_  ( -u A ... A ) )
56 df-f 5275 . . . . . . . . . . . 12  |-  ( (coeff `  a ) : NN0 --> (
-u A ... A
)  <->  ( (coeff `  a )  Fn  NN0  /\ 
ran  (coeff `  a )  C_  ( -u A ... A ) ) )
5738, 55, 56sylanbrc 645 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  (coeff `  a
) : NN0 --> ( -u A ... A ) )
58 elfznn0 10838 . . . . . . . . . . . 12  |-  ( a  e.  ( 0 ... A )  ->  a  e.  NN0 )
5958ssriv 3197 . . . . . . . . . . 11  |-  ( 0 ... A )  C_  NN0
60 fssres 5424 . . . . . . . . . . 11  |-  ( ( (coeff `  a ) : NN0 --> ( -u A ... A )  /\  (
0 ... A )  C_  NN0 )  ->  ( (coeff `  a )  |`  (
0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) )
6157, 59, 60sylancl 643 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ( (coeff `  a )  |`  (
0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) )
62 ovex 5899 . . . . . . . . . . 11  |-  ( -u A ... A )  e. 
_V
63 ovex 5899 . . . . . . . . . . 11  |-  ( 0 ... A )  e. 
_V
6462, 63elmap 6812 . . . . . . . . . 10  |-  ( ( (coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) )  <-> 
( (coeff `  a
)  |`  ( 0 ... A ) ) : ( 0 ... A
) --> ( -u A ... A ) )
6561, 64sylibr 203 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a
) `  e )
)  <_  A )
)  ->  ( (coeff `  a )  |`  (
0 ... A ) )  e.  ( ( -u A ... A )  ^m  ( 0 ... A
) ) )
6665ex 423 . . . . . . . 8  |-  ( A  e.  NN0  ->  ( ( a  e.  (Poly `  ZZ )  /\  A. e  e.  NN0  ( abs `  (
(coeff `  a ) `  e ) )  <_  A )  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) ) ) )
6731, 66syl5 28 . . . . . . 7  |-  ( A  e.  NN0  ->  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  e.  ( ( -u A ... A )  ^m  (
0 ... A ) ) ) )
68 simp2 956 . . . . . . . . . 10  |-  ( ( a  =/=  0 p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
)  ->  (deg `  a
)  <_  A )
6968anim2i 552 . . . . . . . . 9  |-  ( ( a  e.  (Poly `  ZZ )  /\  (
a  =/=  0 p  /\  (deg `  a
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  a ) `  e
) )  <_  A
) )  ->  (
a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
) )
7028, 69sylbi 187 . . . . . . . 8  |-  ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
) )
71 neeq1 2467 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
d  =/=  0 p  <-> 
b  =/=  0 p ) )
72 fveq2 5541 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (deg `  d )  =  (deg
`  b ) )
7372breq1d 4049 . . . . . . . . . . 11  |-  ( d  =  b  ->  (
(deg `  d )  <_  A  <->  (deg `  b )  <_  A ) )
74 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( d  =  b  ->  (coeff `  d )  =  (coeff `  b ) )
7574fveq1d 5543 . . . . . . . . . . . . . 14  |-  ( d  =  b  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  b ) `  e ) )
7675fveq2d 5545 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  b ) `  e
) ) )
7776breq1d 4049 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  b ) `  e ) )  <_  A ) )
7877ralbidv 2576 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) )
7971, 73, 783anbi123d 1252 . . . . . . . . . 10  |-  ( d  =  b  ->  (
( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( b  =/=  0 p  /\  (deg `  b )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) ) )
8079elrab 2936 . . . . . . . . 9  |-  ( b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( b  e.  (Poly `  ZZ )  /\  ( b  =/=  0 p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) ) )
81 simp2 956 . . . . . . . . . 10  |-  ( ( b  =/=  0 p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
)  ->  (deg `  b
)  <_  A )
8281anim2i 552 . . . . . . . . 9  |-  ( ( b  e.  (Poly `  ZZ )  /\  (
b  =/=  0 p  /\  (deg `  b
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  b ) `  e
) )  <_  A
) )  ->  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )
8380, 82sylbi 187 . . . . . . . 8  |-  ( b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )
84 simplll 734 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  e.  (Poly `  ZZ ) )
85 plyf 19596 . . . . . . . . . . . . 13  |-  ( a  e.  (Poly `  ZZ )  ->  a : CC --> CC )
86 ffn 5405 . . . . . . . . . . . . 13  |-  ( a : CC --> CC  ->  a  Fn  CC )
8784, 85, 863syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  Fn  CC )
88 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  b  e.  (Poly `  ZZ ) )
89 plyf 19596 . . . . . . . . . . . . 13  |-  ( b  e.  (Poly `  ZZ )  ->  b : CC --> CC )
90 ffn 5405 . . . . . . . . . . . . 13  |-  ( b : CC --> CC  ->  b  Fn  CC )
9188, 89, 903syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  b  Fn  CC )
92 simplrr 737 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) ) )
9392adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )
9493fveq1d 5543 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( ( (coeff `  b
)  |`  ( 0 ... A ) ) `  d ) )
95 fvres 5558 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 0 ... A )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  a ) `  d ) )
9695adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  a ) `  d ) )
97 fvres 5558 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 0 ... A )  ->  (
( (coeff `  b
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  b ) `  d ) )
9897adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  b
)  |`  ( 0 ... A ) ) `  d )  =  ( (coeff `  b ) `  d ) )
9994, 96, 983eqtr3d 2336 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
(coeff `  a ) `  d )  =  ( (coeff `  b ) `  d ) )
10099oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  /\  ( A  e.  NN0  /\  ( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) ) ) )  /\  c  e.  CC )  /\  d  e.  ( 0 ... A
) )  ->  (
( (coeff `  a
) `  d )  x.  ( c ^ d
) )  =  ( ( (coeff `  b
) `  d )  x.  ( c ^ d
) ) )
101100sumeq2dv 12192 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a ) `  d
)  x.  ( c ^ d ) )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b ) `  d
)  x.  ( c ^ d ) ) )
102 simp1ll 1018 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )  /\  c  e.  CC )  ->  a  e.  (Poly `  ZZ ) )
1031023expa 1151 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  a  e.  (Poly `  ZZ ) )
104 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  (deg `  a
)  <_  A )
105104adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  a
)  <_  A )
106 dgrcl 19631 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  (Poly `  ZZ )  ->  (deg `  a
)  e.  NN0 )
107 nn0z 10062 . . . . . . . . . . . . . . . . 17  |-  ( (deg
`  a )  e. 
NN0  ->  (deg `  a
)  e.  ZZ )
108103, 106, 1073syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  a
)  e.  ZZ )
109 simplrl 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  NN0 )
110109nn0zd 10131 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  ZZ )
111 eluz 10257 . . . . . . . . . . . . . . . 16  |-  ( ( (deg `  a )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  (deg `  a ) )  <-> 
(deg `  a )  <_  A ) )
112108, 110, 111syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( A  e.  ( ZZ>= `  (deg `  a
) )  <->  (deg `  a
)  <_  A )
)
113105, 112mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  (
ZZ>= `  (deg `  a
) ) )
114 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  c  e.  CC )
115 eqid 2296 . . . . . . . . . . . . . . 15  |-  (deg `  a )  =  (deg
`  a )
11633, 115coeid3 19638 . . . . . . . . . . . . . 14  |-  ( ( a  e.  (Poly `  ZZ )  /\  A  e.  ( ZZ>= `  (deg `  a
) )  /\  c  e.  CC )  ->  (
a `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a ) `  d
)  x.  ( c ^ d ) ) )
117103, 113, 114, 116syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( a `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  a
) `  d )  x.  ( c ^ d
) ) )
118 simp1rl 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )  /\  c  e.  CC )  ->  b  e.  (Poly `  ZZ ) )
1191183expa 1151 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  b  e.  (Poly `  ZZ ) )
120 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  (deg `  b
)  <_  A )
121120adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  b
)  <_  A )
122 dgrcl 19631 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  (Poly `  ZZ )  ->  (deg `  b
)  e.  NN0 )
123 nn0z 10062 . . . . . . . . . . . . . . . . 17  |-  ( (deg
`  b )  e. 
NN0  ->  (deg `  b
)  e.  ZZ )
124119, 122, 1233syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  (deg `  b
)  e.  ZZ )
125 eluz 10257 . . . . . . . . . . . . . . . 16  |-  ( ( (deg `  b )  e.  ZZ  /\  A  e.  ZZ )  ->  ( A  e.  ( ZZ>= `  (deg `  b ) )  <-> 
(deg `  b )  <_  A ) )
126124, 110, 125syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( A  e.  ( ZZ>= `  (deg `  b
) )  <->  (deg `  b
)  <_  A )
)
127121, 126mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  A  e.  (
ZZ>= `  (deg `  b
) ) )
128 eqid 2296 . . . . . . . . . . . . . . 15  |-  (coeff `  b )  =  (coeff `  b )
129 eqid 2296 . . . . . . . . . . . . . . 15  |-  (deg `  b )  =  (deg
`  b )
130128, 129coeid3 19638 . . . . . . . . . . . . . 14  |-  ( ( b  e.  (Poly `  ZZ )  /\  A  e.  ( ZZ>= `  (deg `  b
) )  /\  c  e.  CC )  ->  (
b `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b ) `  d
)  x.  ( c ^ d ) ) )
131119, 127, 114, 130syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( b `  c )  =  sum_ d  e.  ( 0 ... A ) ( ( (coeff `  b
) `  d )  x.  ( c ^ d
) ) )
132101, 117, 1313eqtr4d 2338 . . . . . . . . . . . 12  |-  ( ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a
)  <_  A )  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  /\  c  e.  CC )  ->  ( a `  c )  =  ( b `  c ) )
13387, 91, 132eqfnfvd 5641 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  ( A  e.  NN0  /\  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) ) )  ->  a  =  b )
134133expr 598 . . . . . . . . . 10  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  A  e.  NN0 )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) )  -> 
a  =  b ) )
135 fveq2 5541 . . . . . . . . . . 11  |-  ( a  =  b  ->  (coeff `  a )  =  (coeff `  b ) )
136135reseq1d 4970 . . . . . . . . . 10  |-  ( a  =  b  ->  (
(coeff `  a )  |`  ( 0 ... A
) )  =  ( (coeff `  b )  |`  ( 0 ... A
) ) )
137134, 136impbid1 194 . . . . . . . . 9  |-  ( ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A )  /\  (
b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A
) )  /\  A  e.  NN0 )  ->  (
( (coeff `  a
)  |`  ( 0 ... A ) )  =  ( (coeff `  b
)  |`  ( 0 ... A ) )  <->  a  =  b ) )
138137expcom 424 . . . . . . . 8  |-  ( A  e.  NN0  ->  ( ( ( a  e.  (Poly `  ZZ )  /\  (deg `  a )  <_  A
)  /\  ( b  e.  (Poly `  ZZ )  /\  (deg `  b )  <_  A ) )  -> 
( ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) )  <-> 
a  =  b ) ) )
13970, 83, 138syl2ani 637 . . . . . . 7  |-  ( A  e.  NN0  ->  ( ( a  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  /\  b  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) } )  -> 
( ( (coeff `  a )  |`  (
0 ... A ) )  =  ( (coeff `  b )  |`  (
0 ... A ) )  <-> 
a  =  b ) ) )
14067, 139dom2d 6918 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  _V  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) ) )
14118, 140mpi 16 . . . . 5  |-  ( A  e.  NN0  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) )
142 domfi 7100 . . . . 5  |-  ( ( ( ( -u A ... A )  ^m  (
0 ... A ) )  e.  Fin  /\  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ~<_  ( (
-u A ... A
)  ^m  ( 0 ... A ) ) )  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin )
14317, 141, 142syl2anc 642 . . . 4  |-  ( A  e.  NN0  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin )
144 neeq1 2467 . . . . . . . . 9  |-  ( d  =  c  ->  (
d  =/=  0 p  <-> 
c  =/=  0 p ) )
145 fveq2 5541 . . . . . . . . . 10  |-  ( d  =  c  ->  (deg `  d )  =  (deg
`  c ) )
146145breq1d 4049 . . . . . . . . 9  |-  ( d  =  c  ->  (
(deg `  d )  <_  A  <->  (deg `  c )  <_  A ) )
147 fveq2 5541 . . . . . . . . . . . . 13  |-  ( d  =  c  ->  (coeff `  d )  =  (coeff `  c ) )
148147fveq1d 5543 . . . . . . . . . . . 12  |-  ( d  =  c  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  c ) `  e ) )
149148fveq2d 5545 . . . . . . . . . . 11  |-  ( d  =  c  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  c ) `  e
) ) )
150149breq1d 4049 . . . . . . . . . 10  |-  ( d  =  c  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  A 
<->  ( abs `  (
(coeff `  c ) `  e ) )  <_  A ) )
151150ralbidv 2576 . . . . . . . . 9  |-  ( d  =  c  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A  <->  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) )
152144, 146, 1513anbi123d 1252 . . . . . . . 8  |-  ( d  =  c  ->  (
( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
)  <->  ( c  =/=  0 p  /\  (deg `  c )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) ) )
153152elrab 2936 . . . . . . 7  |-  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  <->  ( c  e.  (Poly `  ZZ )  /\  ( c  =/=  0 p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) ) )
154 simp1 955 . . . . . . . 8  |-  ( ( c  =/=  0 p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
)  ->  c  =/=  0 p )
155154anim2i 552 . . . . . . 7  |-  ( ( c  e.  (Poly `  ZZ )  /\  (
c  =/=  0 p  /\  (deg `  c
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  c ) `  e
) )  <_  A
) )  ->  (
c  e.  (Poly `  ZZ )  /\  c  =/=  0 p ) )
156153, 155sylbi 187 . . . . . 6  |-  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  (
c  e.  (Poly `  ZZ )  /\  c  =/=  0 p ) )
157 plyf 19596 . . . . . . . . . . . . 13  |-  ( c  e.  (Poly `  ZZ )  ->  c : CC --> CC )
158 ffn 5405 . . . . . . . . . . . . 13  |-  ( c : CC --> CC  ->  c  Fn  CC )
159157, 158syl 15 . . . . . . . . . . . 12  |-  ( c  e.  (Poly `  ZZ )  ->  c  Fn  CC )
160159adantr 451 . . . . . . . . . . 11  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  -> 
c  Fn  CC )
161 fniniseg 5662 . . . . . . . . . . 11  |-  ( c  Fn  CC  ->  (
a  e.  ( `' c " { 0 } )  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) ) )
162160, 161syl 15 . . . . . . . . . 10  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  -> 
( a  e.  ( `' c " {
0 } )  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) ) )
163 fveq2 5541 . . . . . . . . . . . 12  |-  ( b  =  a  ->  (
c `  b )  =  ( c `  a ) )
164163eqeq1d 2304 . . . . . . . . . . 11  |-  ( b  =  a  ->  (
( c `  b
)  =  0  <->  (
c `  a )  =  0 ) )
165164elrab 2936 . . . . . . . . . 10  |-  ( a  e.  { b  e.  CC  |  ( c `
 b )  =  0 }  <->  ( a  e.  CC  /\  ( c `
 a )  =  0 ) )
166162, 165syl6rbbr 255 . . . . . . . . 9  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  -> 
( a  e.  {
b  e.  CC  | 
( c `  b
)  =  0 }  <-> 
a  e.  ( `' c " { 0 } ) ) )
167166eqrdv 2294 . . . . . . . 8  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  =  ( `' c " { 0 } ) )
168 eqid 2296 . . . . . . . . . 10  |-  ( `' c " { 0 } )  =  ( `' c " {
0 } )
169168fta1 19704 . . . . . . . . 9  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  -> 
( ( `' c
" { 0 } )  e.  Fin  /\  ( # `  ( `' c " { 0 } ) )  <_ 
(deg `  c )
) )
170169simpld 445 . . . . . . . 8  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  -> 
( `' c " { 0 } )  e.  Fin )
171167, 170eqeltrd 2370 . . . . . . 7  |-  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
172171a1i 10 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( c  e.  (Poly `  ZZ )  /\  c  =/=  0 p )  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
)
173156, 172syl5 28 . . . . 5  |-  ( A  e.  NN0  ->  ( c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ->  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin ) )
174173ralrimiv 2638 . . . 4  |-  ( A  e.  NN0  ->  A. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
175 iunfi 7160 . . . 4  |-  ( ( { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  e.  Fin  /\ 
A. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )  ->  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
176143, 174, 175syl2anc 642 . . 3  |-  ( A  e.  NN0  ->  U_ c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d
)  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  { b  e.  CC  |  ( c `  b )  =  0 }  e.  Fin )
17712, 176syl5eqelr 2381 . 2  |-  ( A  e.  NN0  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  A  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  A
) }  ( c `
 b )  =  0 }  e.  Fin )
17811, 177eqeltrd 2370 1  |-  ( A  e.  NN0  ->  ( H `
 A )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    C_ wss 3165   {csn 3653   U_ciun 3921   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788    ~<_ cdom 6877   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    <_ cle 8884   -ucneg 9054   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   ^cexp 11120   #chash 11353   abscabs 11735   sum_csu 12174   0 pc0p 19040  Polycply 19582  coeffccoe 19584  degcdgr 19585
This theorem is referenced by:  aannenlem3  19726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-0p 19041  df-ply 19586  df-idp 19587  df-coe 19588  df-dgr 19589  df-quot 19687
  Copyright terms: Public domain W3C validator