MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Unicode version

Theorem aannenlem3 20239
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
Assertion
Ref Expression
aannenlem3  |-  AA  ~~  NN
Distinct variable group:    a, b, c, d, e
Allowed substitution hints:    H( e, a, b, c, d)

Proof of Theorem aannenlem3
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnso 12838 . . . 4  |-  E. f 
f  Or  CC
2 aannenlem.a . . . . . . 7  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0 p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
32aannenlem2 20238 . . . . . 6  |-  AA  =  U. ran  H
4 omelon 7593 . . . . . . . . . . 11  |-  om  e.  On
5 nn0ennn 11310 . . . . . . . . . . . . 13  |-  NN0  ~~  NN
6 nnenom 11311 . . . . . . . . . . . . 13  |-  NN  ~~  om
75, 6entri 7153 . . . . . . . . . . . 12  |-  NN0  ~~  om
87ensymi 7149 . . . . . . . . . . 11  |-  om  ~~  NN0
9 isnumi 7825 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN0 )  ->  NN0  e.  dom  card )
104, 8, 9mp2an 654 . . . . . . . . . 10  |-  NN0  e.  dom  card
11 cnex 9063 . . . . . . . . . . . . 13  |-  CC  e.  _V
1211rabex 4346 . . . . . . . . . . . 12  |-  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0 p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  e.  _V
1312, 2fnmpti 5565 . . . . . . . . . . 11  |-  H  Fn  NN0
14 dffn4 5651 . . . . . . . . . . 11  |-  ( H  Fn  NN0  <->  H : NN0 -onto-> ran  H )
1513, 14mpbi 200 . . . . . . . . . 10  |-  H : NN0 -onto-> ran  H
16 fodomnum 7930 . . . . . . . . . 10  |-  ( NN0 
e.  dom  card  ->  ( H : NN0 -onto-> ran  H  ->  ran  H  ~<_  NN0 )
)
1710, 15, 16mp2 9 . . . . . . . . 9  |-  ran  H  ~<_  NN0
18 domentr 7158 . . . . . . . . 9  |-  ( ( ran  H  ~<_  NN0  /\  NN0  ~~  om )  ->  ran  H  ~<_  om )
1917, 7, 18mp2an 654 . . . . . . . 8  |-  ran  H  ~<_  om
2019a1i 11 . . . . . . 7  |-  ( f  Or  CC  ->  ran  H  ~<_  om )
21 fvelrnb 5766 . . . . . . . . . . 11  |-  ( H  Fn  NN0  ->  ( f  e.  ran  H  <->  E. g  e.  NN0  ( H `  g )  =  f ) )
2213, 21ax-mp 8 . . . . . . . . . 10  |-  ( f  e.  ran  H  <->  E. g  e.  NN0  ( H `  g )  =  f )
232aannenlem1 20237 . . . . . . . . . . . 12  |-  ( g  e.  NN0  ->  ( H `
 g )  e. 
Fin )
24 eleq1 2495 . . . . . . . . . . . 12  |-  ( ( H `  g )  =  f  ->  (
( H `  g
)  e.  Fin  <->  f  e.  Fin ) )
2523, 24syl5ibcom 212 . . . . . . . . . . 11  |-  ( g  e.  NN0  ->  ( ( H `  g )  =  f  ->  f  e.  Fin ) )
2625rexlimiv 2816 . . . . . . . . . 10  |-  ( E. g  e.  NN0  ( H `  g )  =  f  ->  f  e. 
Fin )
2722, 26sylbi 188 . . . . . . . . 9  |-  ( f  e.  ran  H  -> 
f  e.  Fin )
2827ssriv 3344 . . . . . . . 8  |-  ran  H  C_ 
Fin
2928a1i 11 . . . . . . 7  |-  ( f  Or  CC  ->  ran  H 
C_  Fin )
30 aasscn 20227 . . . . . . . . 9  |-  AA  C_  CC
313, 30eqsstr3i 3371 . . . . . . . 8  |-  U. ran  H 
C_  CC
32 soss 4513 . . . . . . . 8  |-  ( U. ran  H  C_  CC  ->  ( f  Or  CC  ->  f  Or  U. ran  H
) )
3331, 32ax-mp 8 . . . . . . 7  |-  ( f  Or  CC  ->  f  Or  U. ran  H )
34 iunfictbso 7987 . . . . . . 7  |-  ( ( ran  H  ~<_  om  /\  ran  H  C_  Fin  /\  f  Or  U. ran  H )  ->  U. ran  H  ~<_  om )
3520, 29, 33, 34syl3anc 1184 . . . . . 6  |-  ( f  Or  CC  ->  U. ran  H  ~<_  om )
363, 35syl5eqbr 4237 . . . . 5  |-  ( f  Or  CC  ->  AA  ~<_  om )
3736exlimiv 1644 . . . 4  |-  ( E. f  f  Or  CC  ->  AA  ~<_  om )
381, 37ax-mp 8 . . 3  |-  AA  ~<_  om
396ensymi 7149 . . 3  |-  om  ~~  NN
40 domentr 7158 . . 3  |-  ( ( AA  ~<_  om  /\  om  ~~  NN )  ->  AA  ~<_  NN )
4138, 39, 40mp2an 654 . 2  |-  AA  ~<_  NN
4211, 30ssexi 4340 . . 3  |-  AA  e.  _V
43 nnssq 10575 . . . 4  |-  NN  C_  QQ
44 qssaa 20233 . . . 4  |-  QQ  C_  AA
4543, 44sstri 3349 . . 3  |-  NN  C_  AA
46 ssdomg 7145 . . 3  |-  ( AA  e.  _V  ->  ( NN  C_  AA  ->  NN  ~<_  AA ) )
4742, 45, 46mp2 9 . 2  |-  NN  ~<_  AA
48 sbth 7219 . 2  |-  ( ( AA  ~<_  NN  /\  NN  ~<_  AA )  ->  AA  ~~  NN )
4941, 47, 48mp2an 654 1  |-  AA  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   U.cuni 4007   class class class wbr 4204    e. cmpt 4258    Or wor 4494   Oncon0 4573   omcom 4837   dom cdm 4870   ran crn 4871    Fn wfn 5441   -onto->wfo 5444   ` cfv 5446    ~~ cen 7098    ~<_ cdom 7099   Fincfn 7101   cardccrd 7814   CCcc 8980   0cc0 8982    <_ cle 9113   NNcn 9992   NN0cn0 10213   ZZcz 10274   QQcq 10566   abscabs 12031   0 pc0p 19553  Polycply 20095  coeffccoe 20097  degcdgr 20098   AAcaa 20223
This theorem is referenced by:  aannen  20240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-0p 19554  df-ply 20099  df-idp 20100  df-coe 20101  df-dgr 20102  df-quot 20200  df-aa 20224
  Copyright terms: Public domain W3C validator