MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem3 Unicode version

Theorem abelthlem3 19809
Description: Lemma for abelth 19817. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
Assertion
Ref Expression
abelthlem3  |-  ( (
ph  /\  X  e.  S )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^ n ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    z, n, M    n, X, z    A, n, z    ph, n    S, n
Allowed substitution hints:    ph( z)    S( z)

Proof of Theorem abelthlem3
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
2 abelth.2 . . . . . . 7  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
3 abelth.3 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
4 abelth.4 . . . . . . 7  |-  ( ph  ->  0  <_  M )
5 abelth.5 . . . . . . 7  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
61, 2, 3, 4, 5abelthlem2 19808 . . . . . 6  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
76simprd 449 . . . . 5  |-  ( ph  ->  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
8 ssundif 3537 . . . . 5  |-  ( S 
C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( S  \  { 1 } ) 
C_  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) )
97, 8sylibr 203 . . . 4  |-  ( ph  ->  S  C_  ( {
1 }  u.  (
0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
109sselda 3180 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  ( { 1 }  u.  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) ) )
11 elun 3316 . . 3  |-  ( X  e.  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( X  e.  { 1 }  \/  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1210, 11sylib 188 . 2  |-  ( (
ph  /\  X  e.  S )  ->  ( X  e.  { 1 }  \/  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
131feqmptd 5575 . . . . . . 7  |-  ( ph  ->  A  =  ( n  e.  NN0  |->  ( A `
 n ) ) )
14 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( A : NN0 --> CC  /\  n  e.  NN0 )  -> 
( A `  n
)  e.  CC )
151, 14sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( A `  n )  e.  CC )
1615mulid1d 8852 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( ( A `  n )  x.  1 )  =  ( A `  n ) )
1716mpteq2dva 4106 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A `  n )  x.  1 ) )  =  ( n  e.  NN0  |->  ( A `
 n ) ) )
1813, 17eqtr4d 2318 . . . . . 6  |-  ( ph  ->  A  =  ( n  e.  NN0  |->  ( ( A `  n )  x.  1 ) ) )
19 elsni 3664 . . . . . . . . . . 11  |-  ( X  e.  { 1 }  ->  X  =  1 )
2019oveq1d 5873 . . . . . . . . . 10  |-  ( X  e.  { 1 }  ->  ( X ^
n )  =  ( 1 ^ n ) )
21 nn0z 10046 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
22 1exp 11131 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
2321, 22syl 15 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
2420, 23sylan9eq 2335 . . . . . . . . 9  |-  ( ( X  e.  { 1 }  /\  n  e. 
NN0 )  ->  ( X ^ n )  =  1 )
2524oveq2d 5874 . . . . . . . 8  |-  ( ( X  e.  { 1 }  /\  n  e. 
NN0 )  ->  (
( A `  n
)  x.  ( X ^ n ) )  =  ( ( A `
 n )  x.  1 ) )
2625mpteq2dva 4106 . . . . . . 7  |-  ( X  e.  { 1 }  ->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( X ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( A `  n )  x.  1 ) ) )
2726eqcomd 2288 . . . . . 6  |-  ( X  e.  { 1 }  ->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  1 ) )  =  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^ n ) ) ) )
2818, 27sylan9eq 2335 . . . . 5  |-  ( (
ph  /\  X  e.  { 1 } )  ->  A  =  ( n  e.  NN0  |->  ( ( A `
 n )  x.  ( X ^ n
) ) ) )
2928seqeq3d 11054 . . . 4  |-  ( (
ph  /\  X  e.  { 1 } )  ->  seq  0 (  +  ,  A )  =  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^ n ) ) ) ) )
302adantr 451 . . . 4  |-  ( (
ph  /\  X  e.  { 1 } )  ->  seq  0 (  +  ,  A )  e.  dom  ~~>  )
3129, 30eqeltrrd 2358 . . 3  |-  ( (
ph  /\  X  e.  { 1 } )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^ n ) ) ) )  e.  dom  ~~>  )
32 cnxmet 18282 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
33 0cn 8831 . . . . . . . 8  |-  0  e.  CC
34 1re 8837 . . . . . . . . 9  |-  1  e.  RR
35 rexr 8877 . . . . . . . . 9  |-  ( 1  e.  RR  ->  1  e.  RR* )
3634, 35ax-mp 8 . . . . . . . 8  |-  1  e.  RR*
37 blssm 17968 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
3832, 33, 36, 37mp3an 1277 . . . . . . 7  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
39 simpr 447 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
4038, 39sseldi 3178 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  X  e.  CC )
41 oveq1 5865 . . . . . . . . 9  |-  ( z  =  X  ->  (
z ^ n )  =  ( X ^
n ) )
4241oveq2d 5874 . . . . . . . 8  |-  ( z  =  X  ->  (
( A `  n
)  x.  ( z ^ n ) )  =  ( ( A `
 n )  x.  ( X ^ n
) ) )
4342mpteq2dv 4107 . . . . . . 7  |-  ( z  =  X  ->  (
n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) )  =  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( X ^ n
) ) ) )
44 eqid 2283 . . . . . . 7  |-  ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) )  =  ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) )
45 nn0ex 9971 . . . . . . . 8  |-  NN0  e.  _V
4645mptex 5746 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^
n ) ) )  e.  _V
4743, 44, 46fvmpt 5602 . . . . . 6  |-  ( X  e.  CC  ->  (
( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
z ^ n ) ) ) ) `  X )  =  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^
n ) ) ) )
4840, 47syl 15 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( (
z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  X )  =  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( X ^ n
) ) ) )
4948seqeq3d 11054 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
z ^ n ) ) ) ) `  X ) )  =  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( X ^ n
) ) ) ) )
501adantr 451 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  A : NN0
--> CC )
51 eqid 2283 . . . . 5  |-  sup ( { r  e.  RR  |  seq  0 (  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( ( z  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( z ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )
5240abscld 11918 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( abs `  X )  e.  RR )
5352rexrd 8881 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( abs `  X )  e.  RR* )
5434, 35mp1i 11 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  1  e.  RR* )
55 iccssxr 10732 . . . . . . 7  |-  ( 0 [,]  +oo )  C_  RR*
5644, 50, 51radcnvcl 19793 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  sup ( { r  e.  RR  |  seq  0 (  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  ( 0 [,]  +oo ) )
5755, 56sseldi 3178 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  sup ( { r  e.  RR  |  seq  0 (  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e. 
RR* )
58 eqid 2283 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5958cnmetdval 18280 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
6040, 33, 59sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( X
( abs  o.  -  )
0 )  =  ( abs `  ( X  -  0 ) ) )
6140subid1d 9146 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( X  -  0 )  =  X )
6261fveq2d 5529 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( abs `  ( X  -  0 ) )  =  ( abs `  X ) )
6360, 62eqtrd 2315 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( X
( abs  o.  -  )
0 )  =  ( abs `  X ) )
64 elbl3 17951 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
6532, 36, 64mpanl12 663 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
6633, 40, 65sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <-> 
( X ( abs 
o.  -  ) 0 )  <  1 ) )
6739, 66mpbid 201 . . . . . . 7  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( X
( abs  o.  -  )
0 )  <  1
)
6863, 67eqbrtrrd 4045 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( abs `  X )  <  1
)
691, 2abelthlem1 19807 . . . . . . 7  |-  ( ph  ->  1  <_  sup ( { r  e.  RR  |  seq  0 (  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )
7069adantr 451 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  1  <_  sup ( { r  e.  RR  |  seq  0
(  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
z ^ n ) ) ) ) `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) )
7153, 54, 57, 68, 70xrltletrd 10492 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( abs `  X )  <  sup ( { r  e.  RR  |  seq  0 (  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( z ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )
7244, 50, 51, 40, 71radcnvlt2 19795 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( ( z  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
z ^ n ) ) ) ) `  X ) )  e. 
dom 
~~>  )
7349, 72eqeltrrd 2358 . . 3  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^
n ) ) ) )  e.  dom  ~~>  )
7431, 73jaodan 760 . 2  |-  ( (
ph  /\  ( X  e.  { 1 }  \/  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )  ->  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^
n ) ) ) )  e.  dom  ~~>  )
7512, 74syldan 456 1  |-  ( (
ph  /\  X  e.  S )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A `  n )  x.  ( X ^ n ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    \ cdif 3149    u. cun 3150    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   NN0cn0 9965   ZZcz 10024   [,]cicc 10659    seq cseq 11046   ^cexp 11104   abscabs 11719    ~~> cli 11958   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  abelthlem4  19810  abelthlem9  19816
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-xadd 10453  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-xmet 16373  df-met 16374  df-bl 16375
  Copyright terms: Public domain W3C validator