MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Unicode version

Theorem abelthlem4 19810
Description: Lemma for abelth 19817. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
Assertion
Ref Expression
abelthlem4  |-  ( ph  ->  F : S --> CC )
Distinct variable groups:    x, n, z, M    A, n, x, z    ph, n, x    S, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, n)

Proof of Theorem abelthlem4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10035 . . . 4  |-  0  e.  ZZ
32a1i 10 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  0  e.  ZZ )
4 fveq2 5525 . . . . . 6  |-  ( m  =  n  ->  ( A `  m )  =  ( A `  n ) )
5 oveq2 5866 . . . . . 6  |-  ( m  =  n  ->  (
x ^ m )  =  ( x ^
n ) )
64, 5oveq12d 5876 . . . . 5  |-  ( m  =  n  ->  (
( A `  m
)  x.  ( x ^ m ) )  =  ( ( A `
 n )  x.  ( x ^ n
) ) )
7 eqid 2283 . . . . 5  |-  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
8 ovex 5883 . . . . 5  |-  ( ( A `  n )  x.  ( x ^
n ) )  e. 
_V
96, 7, 8fvmpt 5602 . . . 4  |-  ( n  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) ) `
 n )  =  ( ( A `  n )  x.  (
x ^ n ) ) )
109adantl 452 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
( m  e.  NN0  |->  ( ( A `  m )  x.  (
x ^ m ) ) ) `  n
)  =  ( ( A `  n )  x.  ( x ^
n ) ) )
11 abelth.1 . . . . . 6  |-  ( ph  ->  A : NN0 --> CC )
1211adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  A : NN0 --> CC )
13 ffvelrn 5663 . . . . 5  |-  ( ( A : NN0 --> CC  /\  n  e.  NN0 )  -> 
( A `  n
)  e.  CC )
1412, 13sylan 457 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  ( A `  n )  e.  CC )
15 abelth.5 . . . . . . . 8  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
16 ssrab2 3258 . . . . . . . 8  |-  { z  e.  CC  |  ( abs `  ( 1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  CC
1715, 16eqsstri 3208 . . . . . . 7  |-  S  C_  CC
1817a1i 10 . . . . . 6  |-  ( ph  ->  S  C_  CC )
1918sselda 3180 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  CC )
20 expcl 11121 . . . . 5  |-  ( ( x  e.  CC  /\  n  e.  NN0 )  -> 
( x ^ n
)  e.  CC )
2119, 20sylan 457 . . . 4  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
x ^ n )  e.  CC )
2214, 21mulcld 8855 . . 3  |-  ( ( ( ph  /\  x  e.  S )  /\  n  e.  NN0 )  ->  (
( A `  n
)  x.  ( x ^ n ) )  e.  CC )
23 abelth.2 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
24 abelth.3 . . . 4  |-  ( ph  ->  M  e.  RR )
25 abelth.4 . . . 4  |-  ( ph  ->  0  <_  M )
2611, 23, 24, 25, 15abelthlem3 19809 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  seq  0 (  +  , 
( m  e.  NN0  |->  ( ( A `  m )  x.  (
x ^ m ) ) ) )  e. 
dom 
~~>  )
271, 3, 10, 22, 26isumcl 12224 . 2  |-  ( (
ph  /\  x  e.  S )  ->  sum_ n  e.  NN0  ( ( A `
 n )  x.  ( x ^ n
) )  e.  CC )
28 abelth.6 . 2  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
2927, 28fmptd 5684 1  |-  ( ph  ->  F : S --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868    - cmin 9037   NN0cn0 9965   ZZcz 10024    seq cseq 11046   ^cexp 11104   abscabs 11719    ~~> cli 11958   sum_csu 12158
This theorem is referenced by:  abelthlem7  19814  abelthlem8  19815  abelthlem9  19816  abelth  19817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-xadd 10453  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-xmet 16373  df-met 16374  df-bl 16375
  Copyright terms: Public domain W3C validator