MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Unicode version

Theorem abelthlem5 20382
Description: Lemma for abelth 20388. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
abelth.7  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
Assertion
Ref Expression
abelthlem5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    k, n, x, z, M    k, X, n, x, z    A, k, n, x, z    ph, k, n, x    S, k, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, k, n)

Proof of Theorem abelthlem5
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10551 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10324 . . . . 5  |-  0  e.  ZZ
32a1i 11 . . . 4  |-  ( ph  ->  0  e.  ZZ )
4 1rp 10647 . . . . 5  |-  1  e.  RR+
54a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
6 eqidd 2443 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  m
) )
7 abelth.7 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
81, 3, 5, 6, 7climi0 12337 . . 3  |-  ( ph  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j ) ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  <  1 )
98adantr 453 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
10 simprl 734 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  j  e.  NN0 )
11 oveq2 6118 . . . . . 6  |-  ( n  =  i  ->  (
( abs `  X
) ^ n )  =  ( ( abs `  X ) ^ i
) )
12 eqid 2442 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  X ) ^ n
) )
13 ovex 6135 . . . . . 6  |-  ( ( abs `  X ) ^ i )  e. 
_V
1411, 12, 13fvmpt 5835 . . . . 5  |-  ( i  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
1514adantl 454 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  =  ( ( abs `  X ) ^ i
) )
16 cnxmet 18838 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
17 0cn 9115 . . . . . . . 8  |-  0  e.  CC
18 rpxr 10650 . . . . . . . . 9  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
194, 18ax-mp 5 . . . . . . . 8  |-  1  e.  RR*
20 blssm 18479 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
2116, 17, 19, 20mp3an 1280 . . . . . . 7  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
22 simplr 733 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
2321, 22sseldi 3332 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  CC )
2423abscld 12269 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  RR )
25 reexpcl 11429 . . . . 5  |-  ( ( ( abs `  X
)  e.  RR  /\  i  e.  NN0 )  -> 
( ( abs `  X
) ^ i )  e.  RR )
2624, 25sylan 459 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( abs `  X
) ^ i )  e.  RR )
2715, 26eqeltrd 2516 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  e.  RR )
28 fveq2 5757 . . . . . . 7  |-  ( k  =  i  ->  (  seq  0 (  +  ,  A ) `  k
)  =  (  seq  0 (  +  ,  A ) `  i
) )
29 oveq2 6118 . . . . . . 7  |-  ( k  =  i  ->  ( X ^ k )  =  ( X ^ i
) )
3028, 29oveq12d 6128 . . . . . 6  |-  ( k  =  i  ->  (
(  seq  0 (  +  ,  A ) `
 k )  x.  ( X ^ k
) )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
31 eqid 2442 . . . . . 6  |-  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )  =  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )
32 ovex 6135 . . . . . 6  |-  ( (  seq  0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  _V
3330, 31, 32fvmpt 5835 . . . . 5  |-  ( i  e.  NN0  ->  ( ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
3433adantl 454 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
35 abelth.1 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
3635ffvelrnda 5899 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( A `  x )  e.  CC )
371, 3, 36serf 11382 . . . . . . 7  |-  ( ph  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
3837ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
3938ffvelrnda 5899 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
40 expcl 11430 . . . . . 6  |-  ( ( X  e.  CC  /\  i  e.  NN0 )  -> 
( X ^ i
)  e.  CC )
4123, 40sylan 459 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  ( X ^ i )  e.  CC )
4239, 41mulcld 9139 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
(  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) )  e.  CC )
4334, 42eqeltrd 2516 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  e.  CC )
4424recnd 9145 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  CC )
45 absidm 12158 . . . . . . 7  |-  ( X  e.  CC  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
4623, 45syl 16 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
47 eqid 2442 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4847cnmetdval 18836 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4923, 17, 48sylancl 645 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
5023subid1d 9431 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  -  0 )  =  X )
5150fveq2d 5761 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( X  - 
0 ) )  =  ( abs `  X
) )
5249, 51eqtrd 2474 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  X
) )
53 elbl3 18453 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5416, 19, 53mpanl12 665 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5517, 23, 54sylancr 646 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5622, 55mpbid 203 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  <  1 )
5752, 56eqbrtrrd 4259 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  <  1 )
5846, 57eqbrtrd 4257 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  <  1
)
5944, 58, 15geolim 12678 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) ) )
60 climrel 12317 . . . . 5  |-  Rel  ~~>
6160releldmi 5135 . . . 4  |-  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
6259, 61syl 16 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
63 1re 9121 . . . 4  |-  1  e.  RR
6463a1i 11 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  1  e.  RR )
6538adantr 453 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  seq  0
(  +  ,  A
) : NN0 --> CC )
66 eluznn0 10577 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN0 )
6710, 66sylan 459 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  i  e.  NN0 )
6865, 67ffvelrnd 5900 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
6967, 41syldan 458 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( X ^ i )  e.  CC )
7068, 69absmuld 12287 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  ( abs `  ( X ^
i ) ) ) )
7123adantr 453 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
7271, 67absexpd 12285 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ i
) )  =  ( ( abs `  X
) ^ i ) )
7372oveq2d 6126 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( abs `  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7470, 73eqtrd 2474 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7568abscld 12269 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  e.  RR )
7663a1i 11 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
7767, 26syldan 458 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
i )  e.  RR )
7869absge0d 12277 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( X ^ i ) ) )
7978, 72breqtrd 4261 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ i ) )
80 simprr 735 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
81 fveq2 5757 . . . . . . . . . . 11  |-  ( m  =  i  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  i
) )
8281fveq2d 5761 . . . . . . . . . 10  |-  ( m  =  i  ->  ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  =  ( abs `  (  seq  0
(  +  ,  A
) `  i )
) )
8382breq1d 4247 . . . . . . . . 9  |-  ( m  =  i  ->  (
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  <->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
) )
8483rspccva 3057 . . . . . . . 8  |-  ( ( A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
)
8580, 84sylan 459 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <  1 )
86 ltle 9194 . . . . . . . 8  |-  ( ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
8775, 63, 86sylancl 645 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
8885, 87mpd 15 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <_  1 )
8975, 76, 77, 79, 88lemul1ad 9981 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( ( abs `  X ) ^ i ) )  <_  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9074, 89eqbrtrd 4257 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  <_ 
( 1  x.  (
( abs `  X
) ^ i ) ) )
9167, 33syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
9291fveq2d 5761 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  =  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) ) )
9367, 14syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
9493oveq2d 6126 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) )  =  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9590, 92, 943brtr4d 4267 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) ) )
961, 10, 27, 43, 62, 64, 95cvgcmpce 12628 . 2  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) )  e.  dom  ~~>  )
979, 96rexlimddv 2840 1  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   E.wrex 2712   {crab 2715    C_ wss 3306   class class class wbr 4237    e. cmpt 4291   dom cdm 4907    o. ccom 4911   -->wf 5479   ` cfv 5483  (class class class)co 6110   CCcc 9019   RRcr 9020   0cc0 9021   1c1 9022    + caddc 9024    x. cmul 9026   RR*cxr 9150    < clt 9151    <_ cle 9152    - cmin 9322    / cdiv 9708   NN0cn0 10252   ZZcz 10313   ZZ>=cuz 10519   RR+crp 10643    seq cseq 11354   ^cexp 11413   abscabs 12070    ~~> cli 12309   sum_csu 12510   * Metcxmt 16717   ballcbl 16719
This theorem is referenced by:  abelthlem6  20383  abelthlem7  20385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-pm 7050  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-xadd 10742  df-ico 10953  df-fz 11075  df-fzo 11167  df-fl 11233  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-limsup 12296  df-clim 12313  df-rlim 12314  df-sum 12511  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728
  Copyright terms: Public domain W3C validator