MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Unicode version

Theorem abelthlem5 20312
Description: Lemma for abelth 20318. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
abelth.7  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
Assertion
Ref Expression
abelthlem5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    k, n, x, z, M    k, X, n, x, z    A, k, n, x, z    ph, k, n, x    S, k, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, k, n)

Proof of Theorem abelthlem5
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10484 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10257 . . . . 5  |-  0  e.  ZZ
32a1i 11 . . . 4  |-  ( ph  ->  0  e.  ZZ )
4 1rp 10580 . . . . 5  |-  1  e.  RR+
54a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
6 eqidd 2413 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  m
) )
7 abelth.7 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
81, 3, 5, 6, 7climi0 12269 . . 3  |-  ( ph  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j ) ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  <  1 )
98adantr 452 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
10 simprl 733 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  j  e.  NN0 )
11 oveq2 6056 . . . . . 6  |-  ( n  =  i  ->  (
( abs `  X
) ^ n )  =  ( ( abs `  X ) ^ i
) )
12 eqid 2412 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  X ) ^ n
) )
13 ovex 6073 . . . . . 6  |-  ( ( abs `  X ) ^ i )  e. 
_V
1411, 12, 13fvmpt 5773 . . . . 5  |-  ( i  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
1514adantl 453 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  =  ( ( abs `  X ) ^ i
) )
16 cnxmet 18768 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
17 0cn 9048 . . . . . . . 8  |-  0  e.  CC
18 rpxr 10583 . . . . . . . . 9  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
194, 18ax-mp 8 . . . . . . . 8  |-  1  e.  RR*
20 blssm 18409 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
2116, 17, 19, 20mp3an 1279 . . . . . . 7  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
22 simplr 732 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
2321, 22sseldi 3314 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  CC )
2423abscld 12201 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  RR )
25 reexpcl 11361 . . . . 5  |-  ( ( ( abs `  X
)  e.  RR  /\  i  e.  NN0 )  -> 
( ( abs `  X
) ^ i )  e.  RR )
2624, 25sylan 458 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( abs `  X
) ^ i )  e.  RR )
2715, 26eqeltrd 2486 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  e.  RR )
28 fveq2 5695 . . . . . . 7  |-  ( k  =  i  ->  (  seq  0 (  +  ,  A ) `  k
)  =  (  seq  0 (  +  ,  A ) `  i
) )
29 oveq2 6056 . . . . . . 7  |-  ( k  =  i  ->  ( X ^ k )  =  ( X ^ i
) )
3028, 29oveq12d 6066 . . . . . 6  |-  ( k  =  i  ->  (
(  seq  0 (  +  ,  A ) `
 k )  x.  ( X ^ k
) )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
31 eqid 2412 . . . . . 6  |-  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )  =  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )
32 ovex 6073 . . . . . 6  |-  ( (  seq  0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  _V
3330, 31, 32fvmpt 5773 . . . . 5  |-  ( i  e.  NN0  ->  ( ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
3433adantl 453 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
35 abelth.1 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
3635ffvelrnda 5837 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( A `  x )  e.  CC )
371, 3, 36serf 11314 . . . . . . 7  |-  ( ph  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
3837ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
3938ffvelrnda 5837 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
40 expcl 11362 . . . . . 6  |-  ( ( X  e.  CC  /\  i  e.  NN0 )  -> 
( X ^ i
)  e.  CC )
4123, 40sylan 458 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  ( X ^ i )  e.  CC )
4239, 41mulcld 9072 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
(  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) )  e.  CC )
4334, 42eqeltrd 2486 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  e.  CC )
4424recnd 9078 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  CC )
45 absidm 12090 . . . . . . 7  |-  ( X  e.  CC  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
4623, 45syl 16 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
47 eqid 2412 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4847cnmetdval 18766 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4923, 17, 48sylancl 644 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
5023subid1d 9364 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  -  0 )  =  X )
5150fveq2d 5699 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( X  - 
0 ) )  =  ( abs `  X
) )
5249, 51eqtrd 2444 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  X
) )
53 elbl3 18383 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5416, 19, 53mpanl12 664 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5517, 23, 54sylancr 645 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5622, 55mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  <  1 )
5752, 56eqbrtrrd 4202 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  <  1 )
5846, 57eqbrtrd 4200 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  <  1
)
5944, 58, 15geolim 12610 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) ) )
60 climrel 12249 . . . . 5  |-  Rel  ~~>
6160releldmi 5073 . . . 4  |-  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
6259, 61syl 16 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
63 1re 9054 . . . 4  |-  1  e.  RR
6463a1i 11 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  1  e.  RR )
6538adantr 452 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  seq  0
(  +  ,  A
) : NN0 --> CC )
66 eluznn0 10510 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN0 )
6710, 66sylan 458 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  i  e.  NN0 )
6865, 67ffvelrnd 5838 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
6967, 41syldan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( X ^ i )  e.  CC )
7068, 69absmuld 12219 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  ( abs `  ( X ^
i ) ) ) )
7123adantr 452 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
7271, 67absexpd 12217 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ i
) )  =  ( ( abs `  X
) ^ i ) )
7372oveq2d 6064 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( abs `  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7470, 73eqtrd 2444 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7568abscld 12201 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  e.  RR )
7663a1i 11 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
7767, 26syldan 457 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
i )  e.  RR )
7869absge0d 12209 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( X ^ i ) ) )
7978, 72breqtrd 4204 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ i ) )
80 simprr 734 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
81 fveq2 5695 . . . . . . . . . . 11  |-  ( m  =  i  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  i
) )
8281fveq2d 5699 . . . . . . . . . 10  |-  ( m  =  i  ->  ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  =  ( abs `  (  seq  0
(  +  ,  A
) `  i )
) )
8382breq1d 4190 . . . . . . . . 9  |-  ( m  =  i  ->  (
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  <->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
) )
8483rspccva 3019 . . . . . . . 8  |-  ( ( A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
)
8580, 84sylan 458 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <  1 )
86 ltle 9127 . . . . . . . 8  |-  ( ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
8775, 63, 86sylancl 644 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
8885, 87mpd 15 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <_  1 )
8975, 76, 77, 79, 88lemul1ad 9914 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( ( abs `  X ) ^ i ) )  <_  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9074, 89eqbrtrd 4200 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  <_ 
( 1  x.  (
( abs `  X
) ^ i ) ) )
9167, 33syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
9291fveq2d 5699 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  =  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) ) )
9367, 14syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
9493oveq2d 6064 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) )  =  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9590, 92, 943brtr4d 4210 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) ) )
961, 10, 27, 43, 62, 64, 95cvgcmpce 12560 . 2  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) )  e.  dom  ~~>  )
979, 96rexlimddv 2802 1  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   {crab 2678    C_ wss 3288   class class class wbr 4180    e. cmpt 4234   dom cdm 4845    o. ccom 4849   -->wf 5417   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255    / cdiv 9641   NN0cn0 10185   ZZcz 10246   ZZ>=cuz 10452   RR+crp 10576    seq cseq 11286   ^cexp 11345   abscabs 12002    ~~> cli 12241   sum_csu 12442   * Metcxmt 16649   ballcbl 16651
This theorem is referenced by:  abelthlem6  20313  abelthlem7  20315
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-xadd 10675  df-ico 10886  df-fz 11008  df-fzo 11099  df-fl 11165  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-limsup 12228  df-clim 12245  df-rlim 12246  df-sum 12443  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660
  Copyright terms: Public domain W3C validator