MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Unicode version

Theorem abelthlem5 19811
Description: Lemma for abelth 19817. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq  0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
abelth.7  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
Assertion
Ref Expression
abelthlem5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    k, n, x, z, M    k, X, n, x, z    A, k, n, x, z    ph, k, n, x    S, k, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, k, n)

Proof of Theorem abelthlem5
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10035 . . . . 5  |-  0  e.  ZZ
32a1i 10 . . . 4  |-  ( ph  ->  0  e.  ZZ )
4 1rp 10358 . . . . 5  |-  1  e.  RR+
54a1i 10 . . . 4  |-  ( ph  ->  1  e.  RR+ )
6 eqidd 2284 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  m
) )
7 abelth.7 . . . 4  |-  ( ph  ->  seq  0 (  +  ,  A )  ~~>  0 )
81, 3, 5, 6, 7climi0 11986 . . 3  |-  ( ph  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j ) ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  <  1 )
98adantr 451 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
10 simprl 732 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  j  e.  NN0 )
11 oveq2 5866 . . . . . . . 8  |-  ( n  =  i  ->  (
( abs `  X
) ^ n )  =  ( ( abs `  X ) ^ i
) )
12 eqid 2283 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  X ) ^ n
) )
13 ovex 5883 . . . . . . . 8  |-  ( ( abs `  X ) ^ i )  e. 
_V
1411, 12, 13fvmpt 5602 . . . . . . 7  |-  ( i  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
1514adantl 452 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  =  ( ( abs `  X ) ^ i
) )
16 cnxmet 18282 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
17 0cn 8831 . . . . . . . . . 10  |-  0  e.  CC
18 rpxr 10361 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
194, 18ax-mp 8 . . . . . . . . . 10  |-  1  e.  RR*
20 blssm 17968 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
2116, 17, 19, 20mp3an 1277 . . . . . . . . 9  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
22 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
2321, 22sseldi 3178 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  CC )
2423abscld 11918 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  RR )
25 reexpcl 11120 . . . . . . 7  |-  ( ( ( abs `  X
)  e.  RR  /\  i  e.  NN0 )  -> 
( ( abs `  X
) ^ i )  e.  RR )
2624, 25sylan 457 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( abs `  X
) ^ i )  e.  RR )
2715, 26eqeltrd 2357 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  e.  RR )
28 fveq2 5525 . . . . . . . . 9  |-  ( k  =  i  ->  (  seq  0 (  +  ,  A ) `  k
)  =  (  seq  0 (  +  ,  A ) `  i
) )
29 oveq2 5866 . . . . . . . . 9  |-  ( k  =  i  ->  ( X ^ k )  =  ( X ^ i
) )
3028, 29oveq12d 5876 . . . . . . . 8  |-  ( k  =  i  ->  (
(  seq  0 (  +  ,  A ) `
 k )  x.  ( X ^ k
) )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
31 eqid 2283 . . . . . . . 8  |-  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )  =  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )
32 ovex 5883 . . . . . . . 8  |-  ( (  seq  0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  _V
3330, 31, 32fvmpt 5602 . . . . . . 7  |-  ( i  e.  NN0  ->  ( ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
3433adantl 452 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
35 abelth.1 . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> CC )
36 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  x  e.  NN0 )  -> 
( A `  x
)  e.  CC )
3735, 36sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( A `  x )  e.  CC )
381, 3, 37serf 11074 . . . . . . . . 9  |-  ( ph  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
3938ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  ,  A ) : NN0 --> CC )
40 ffvelrn 5663 . . . . . . . 8  |-  ( (  seq  0 (  +  ,  A ) : NN0 --> CC  /\  i  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
4139, 40sylan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
42 expcl 11121 . . . . . . . 8  |-  ( ( X  e.  CC  /\  i  e.  NN0 )  -> 
( X ^ i
)  e.  CC )
4323, 42sylan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  ( X ^ i )  e.  CC )
4441, 43mulcld 8855 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
(  seq  0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) )  e.  CC )
4534, 44eqeltrd 2357 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  e.  CC )
4624recnd 8861 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  CC )
47 absidm 11807 . . . . . . . . 9  |-  ( X  e.  CC  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
4823, 47syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
49 eqid 2283 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5049cnmetdval 18280 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
5123, 17, 50sylancl 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
5223subid1d 9146 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  -  0 )  =  X )
5352fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( X  - 
0 ) )  =  ( abs `  X
) )
5451, 53eqtrd 2315 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  X
) )
55 elbl3 17951 . . . . . . . . . . . 12  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5616, 19, 55mpanl12 663 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5717, 23, 56sylancr 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5822, 57mpbid 201 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  <  1 )
5954, 58eqbrtrrd 4045 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  <  1 )
6048, 59eqbrtrd 4043 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  <  1
)
6146, 60, 15geolim 12326 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) ) )
62 climrel 11966 . . . . . . 7  |-  Rel  ~~>
6362releldmi 4915 . . . . . 6  |-  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
6461, 63syl 15 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
65 1re 8837 . . . . . 6  |-  1  e.  RR
6665a1i 10 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  1  e.  RR )
6739adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  seq  0
(  +  ,  A
) : NN0 --> CC )
68 eluznn0 10288 . . . . . . . . . . 11  |-  ( ( j  e.  NN0  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN0 )
6910, 68sylan 457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  i  e.  NN0 )
7067, 69, 40syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  (  seq  0 (  +  ,  A ) `  i
)  e.  CC )
7169, 43syldan 456 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( X ^ i )  e.  CC )
7270, 71absmuld 11936 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  ( abs `  ( X ^
i ) ) ) )
7323adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
7473, 69absexpd 11934 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ i
) )  =  ( ( abs `  X
) ^ i ) )
7574oveq2d 5874 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( abs `  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7672, 75eqtrd 2315 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7770abscld 11918 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  e.  RR )
7865a1i 10 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
7969, 26syldan 456 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
i )  e.  RR )
8071absge0d 11926 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( X ^ i ) ) )
8180, 74breqtrd 4047 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ i ) )
82 simprr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
)
83 fveq2 5525 . . . . . . . . . . . . 13  |-  ( m  =  i  ->  (  seq  0 (  +  ,  A ) `  m
)  =  (  seq  0 (  +  ,  A ) `  i
) )
8483fveq2d 5529 . . . . . . . . . . . 12  |-  ( m  =  i  ->  ( abs `  (  seq  0
(  +  ,  A
) `  m )
)  =  ( abs `  (  seq  0
(  +  ,  A
) `  i )
) )
8584breq1d 4033 . . . . . . . . . . 11  |-  ( m  =  i  ->  (
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  <->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
) )
8685rspccva 2883 . . . . . . . . . 10  |-  ( ( A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <  1
)
8782, 86sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <  1 )
88 ltle 8910 . . . . . . . . . 10  |-  ( ( ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
8977, 65, 88sylancl 643 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq  0 (  +  ,  A ) `  i
) )  <_  1
) )
9087, 89mpd 14 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq  0 (  +  ,  A ) `
 i ) )  <_  1 )
9177, 78, 79, 81, 90lemul1ad 9696 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq  0
(  +  ,  A
) `  i )
)  x.  ( ( abs `  X ) ^ i ) )  <_  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9276, 91eqbrtrd 4043 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  <_ 
( 1  x.  (
( abs `  X
) ^ i ) ) )
9369, 33syl 15 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq  0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
9493fveq2d 5529 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  =  ( abs `  ( (  seq  0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) ) )
9569, 14syl 15 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
9695oveq2d 5874 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) )  =  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9792, 94, 963brtr4d 4053 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) ) )
981, 10, 27, 45, 64, 66, 97cvgcmpce 12276 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq  0 (  +  , 
( k  e.  NN0  |->  ( (  seq  0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) )  e.  dom  ~~>  )
9998expr 598 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  j  e. 
NN0 )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  ->  seq  0 (  +  ,  ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  ) )
10099rexlimdva 2667 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  ( E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq  0 (  +  ,  A ) `  m
) )  <  1  ->  seq  0 (  +  ,  ( k  e. 
NN0  |->  ( (  seq  0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  ) )
1019, 100mpd 14 1  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq  0
(  +  ,  ( k  e.  NN0  |->  ( (  seq  0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354    seq cseq 11046   ^cexp 11104   abscabs 11719    ~~> cli 11958   sum_csu 12158   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  abelthlem6  19812  abelthlem7  19814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-xadd 10453  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-xmet 16373  df-met 16374  df-bl 16375
  Copyright terms: Public domain W3C validator