MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2d Unicode version

Theorem abeq2d 2475
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeqd.1  |-  ( ph  ->  A  =  { x  |  ps } )
Assertion
Ref Expression
abeq2d  |-  ( ph  ->  ( x  e.  A  <->  ps ) )

Proof of Theorem abeq2d
StepHypRef Expression
1 abeqd.1 . . 3  |-  ( ph  ->  A  =  { x  |  ps } )
21eleq2d 2433 . 2  |-  ( ph  ->  ( x  e.  A  <->  x  e.  { x  |  ps } ) )
3 abid 2354 . 2  |-  ( x  e.  { x  |  ps }  <->  ps )
42, 3syl6bb 252 1  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1647    e. wcel 1715   {cab 2352
This theorem is referenced by:  fvelimab  5685  ispridlc  26201  dib1dim  31426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-11 1751  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1547  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362
  Copyright terms: Public domain W3C validator