Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abhp Unicode version

Theorem abhp 26276
Description: The half planes delimited by  M. (For my private use only. Don't use.) (Contributed by FL, 16-Sep-2016.)
Hypotheses
Ref Expression
abhp.1  |-  ( ph  ->  G  e. Ibg )
abhp.2  |-  ( ph  ->  M  e.  L )
abhp.3  |-  P  =  (PPoints `  G )
abhp.4  |-  .~  =  ( (ss `  G ) `
 M )
abhp.5  |-  L  =  (PLines `  G )
Assertion
Ref Expression
abhp  |-  ( ph  ->  ( H  e.  ( (Halfplane `  G ) `  M )  <->  E. x  e.  ( P  \  M
) ( H  =  [ x ]  .~  \/  H  =  (
( P  \  M
)  \  [ x ]  .~  ) ) ) )
Distinct variable groups:    x,  .~    x, H    x, M    x, P    ph, x
Allowed substitution hints:    G( x)    L( x)

Proof of Theorem abhp
StepHypRef Expression
1 abhp.1 . . . 4  |-  ( ph  ->  G  e. Ibg )
2 abhp.2 . . . 4  |-  ( ph  ->  M  e.  L )
3 abhp.3 . . . 4  |-  P  =  (PPoints `  G )
4 abhp.4 . . . 4  |-  .~  =  ( (ss `  G ) `
 M )
5 abhp.5 . . . 4  |-  L  =  (PLines `  G )
61, 2, 3, 4, 5aishp 26275 . . 3  |-  ( ph  ->  ( (Halfplane `  G
) `  M )  =  ( ( P 
\  M ) /.  .~  ) )
76eleq2d 2363 . 2  |-  ( ph  ->  ( H  e.  ( (Halfplane `  G ) `  M )  <->  H  e.  ( ( P  \  M ) /.  .~  ) ) )
81isibg1a 26214 . . . . 5  |-  ( ph  ->  G  e. Ig )
93, 5, 8, 2gltpntl 26175 . . . 4  |-  ( ph  ->  E. x  e.  P  x  e/  M )
10 df-nel 2462 . . . . . . . . . . . . 13  |-  ( x  e/  M  <->  -.  x  e.  M )
1110biimpi 186 . . . . . . . . . . . 12  |-  ( x  e/  M  ->  -.  x  e.  M )
1211anim2i 552 . . . . . . . . . . 11  |-  ( ( x  e.  P  /\  x  e/  M )  -> 
( x  e.  P  /\  -.  x  e.  M
) )
13 eldif 3175 . . . . . . . . . . 11  |-  ( x  e.  ( P  \  M )  <->  ( x  e.  P  /\  -.  x  e.  M ) )
1412, 13sylibr 203 . . . . . . . . . 10  |-  ( ( x  e.  P  /\  x  e/  M )  ->  x  e.  ( P  \  M ) )
1514adantl 452 . . . . . . . . 9  |-  ( ( H  e.  ( ( P  \  M ) /.  .~  )  /\  ( x  e.  P  /\  x  e/  M ) )  ->  x  e.  ( P  \  M ) )
16 simpl 443 . . . . . . . . 9  |-  ( ( H  e.  ( ( P  \  M ) /.  .~  )  /\  ( x  e.  P  /\  x  e/  M ) )  ->  H  e.  ( ( P  \  M ) /.  .~  ) )
1715, 16jca 518 . . . . . . . 8  |-  ( ( H  e.  ( ( P  \  M ) /.  .~  )  /\  ( x  e.  P  /\  x  e/  M ) )  ->  ( x  e.  ( P  \  M
)  /\  H  e.  ( ( P  \  M ) /.  .~  ) ) )
1817ex 423 . . . . . . 7  |-  ( H  e.  ( ( P 
\  M ) /.  .~  )  ->  ( (
x  e.  P  /\  x  e/  M )  -> 
( x  e.  ( P  \  M )  /\  H  e.  ( ( P  \  M
) /.  .~  )
) ) )
1918reximdv2 2665 . . . . . 6  |-  ( H  e.  ( ( P 
\  M ) /.  .~  )  ->  ( E. x  e.  P  x  e/  M  ->  E. x  e.  ( P  \  M
) H  e.  ( ( P  \  M
) /.  .~  )
) )
2019com12 27 . . . . 5  |-  ( E. x  e.  P  x  e/  M  ->  ( H  e.  ( ( P  \  M ) /.  .~  )  ->  E. x  e.  ( P  \  M
) H  e.  ( ( P  \  M
) /.  .~  )
) )
211adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  G  e. Ibg )
222adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  M  e.  L )
23 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  x  e.  ( P  \  M ) )
243, 5, 4, 21, 22, 23pdiveql 26271 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  ( H  e.  ( ( P  \  M ) /.  .~  ) 
<->  ( H  =  [
x ]  .~  \/  H  =  ( ( P  \  M )  \  [ x ]  .~  ) ) ) )
2524biimpd 198 . . . . . 6  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  ( H  e.  ( ( P  \  M ) /.  .~  )  ->  ( H  =  [ x ]  .~  \/  H  =  (
( P  \  M
)  \  [ x ]  .~  ) ) ) )
2625reximdva 2668 . . . . 5  |-  ( ph  ->  ( E. x  e.  ( P  \  M
) H  e.  ( ( P  \  M
) /.  .~  )  ->  E. x  e.  ( P  \  M ) ( H  =  [
x ]  .~  \/  H  =  ( ( P  \  M )  \  [ x ]  .~  ) ) ) )
2720, 26syl9 66 . . . 4  |-  ( E. x  e.  P  x  e/  M  ->  ( ph  ->  ( H  e.  ( ( P  \  M ) /.  .~  )  ->  E. x  e.  ( P  \  M ) ( H  =  [
x ]  .~  \/  H  =  ( ( P  \  M )  \  [ x ]  .~  ) ) ) ) )
289, 27mpcom 32 . . 3  |-  ( ph  ->  ( H  e.  ( ( P  \  M
) /.  .~  )  ->  E. x  e.  ( P  \  M ) ( H  =  [
x ]  .~  \/  H  =  ( ( P  \  M )  \  [ x ]  .~  ) ) ) )
2924biimprd 214 . . . 4  |-  ( (
ph  /\  x  e.  ( P  \  M ) )  ->  ( ( H  =  [ x ]  .~  \/  H  =  ( ( P  \  M )  \  [
x ]  .~  )
)  ->  H  e.  ( ( P  \  M ) /.  .~  ) ) )
3029rexlimdva 2680 . . 3  |-  ( ph  ->  ( E. x  e.  ( P  \  M
) ( H  =  [ x ]  .~  \/  H  =  (
( P  \  M
)  \  [ x ]  .~  ) )  ->  H  e.  ( ( P  \  M ) /.  .~  ) ) )
3128, 30impbid 183 . 2  |-  ( ph  ->  ( H  e.  ( ( P  \  M
) /.  .~  )  <->  E. x  e.  ( P 
\  M ) ( H  =  [ x ]  .~  \/  H  =  ( ( P  \  M )  \  [
x ]  .~  )
) ) )
327, 31bitrd 244 1  |-  ( ph  ->  ( H  e.  ( (Halfplane `  G ) `  M )  <->  E. x  e.  ( P  \  M
) ( H  =  [ x ]  .~  \/  H  =  (
( P  \  M
)  \  [ x ]  .~  ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    e/ wnel 2460   E.wrex 2557    \ cdif 3162   ` cfv 5271   [cec 6674   /.cqs 6675  PPointscpoints 26159  PLinescplines 26161  Ibgcibg 26210  sscsas 26265  Halfplanechalfp 26273
This theorem is referenced by:  bhp2a  26279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-ec 6678  df-qs 6682  df-ig2 26164  df-li 26180  df-col 26194  df-ibg2 26212  df-seg2 26234  df-sside 26266  df-halfplane 26274
  Copyright terms: Public domain W3C validator