MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac Unicode version

Theorem ablfac 15339
Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
ablfac  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
Distinct variable groups:    s, r, B    C, s    ph, s    G, r, s
Allowed substitution hints:    ph( r)    C( r)

Proof of Theorem ablfac
Dummy variables  p  x  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . . . 5  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 15110 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 ablfac.b . . . . . 6  |-  B  =  ( Base `  G
)
43subgid 14639 . . . . 5  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
51, 2, 43syl 18 . . . 4  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
6 ablfac.c . . . . 5  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
7 ablfac.2 . . . . 5  |-  ( ph  ->  B  e.  Fin )
8 eqid 2296 . . . . 5  |-  ( od
`  G )  =  ( od `  G
)
9 eqid 2296 . . . . 5  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
10 eqid 2296 . . . . 5  |-  ( p  e.  { w  e. 
Prime  |  w  ||  ( # `
 B ) } 
|->  { x  e.  B  |  ( ( od
`  G ) `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )  =  ( p  e.  { w  e. 
Prime  |  w  ||  ( # `
 B ) } 
|->  { x  e.  B  |  ( ( od
`  G ) `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
11 eqid 2296 . . . . 5  |-  ( g  e.  (SubGrp `  G
)  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  g ) } )  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
123, 6, 1, 7, 8, 9, 10, 11ablfaclem1 15336 . . . 4  |-  ( B  e.  (SubGrp `  G
)  ->  ( (
g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } ) `  B )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  B ) } )
135, 12syl 15 . . 3  |-  ( ph  ->  ( ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  g ) } ) `  B
)  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) } )
143, 6, 1, 7, 8, 9, 10, 11ablfaclem3 15338 . . 3  |-  ( ph  ->  ( ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  g ) } ) `  B
)  =/=  (/) )
1513, 14eqnetrrd 2479 . 2  |-  ( ph  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) }  =/=  (/) )
16 rabn0 3487 . 2  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  B ) }  =/=  (/)  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
1715, 16sylib 188 1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   {crab 2560    i^i cin 3164   (/)c0 3468   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706   ` cfv 5271  (class class class)co 5874   Fincfn 6879   ^cexp 11120   #chash 11353  Word cword 11419    || cdivides 12547   Primecprime 12774    pCnt cpc 12905   Basecbs 13164   ↾s cress 13165   Grpcgrp 14378  SubGrpcsubg 14631   odcod 14856   pGrp cpgp 14858   Abelcabel 15106  CycGrpccyg 15180   DProd cdprd 15247
This theorem is referenced by:  ablfac2  15340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-eqg 14636  df-ghm 14697  df-gim 14739  df-ga 14760  df-cntz 14809  df-oppg 14835  df-od 14860  df-gex 14861  df-pgp 14862  df-lsm 14963  df-pj1 14964  df-cmn 15107  df-abl 15108  df-cyg 15181  df-dprd 15249
  Copyright terms: Public domain W3C validator