MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1a Structured version   Unicode version

Theorem ablfac1a 15632
Description: The factors of ablfac1b 15633 are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
Assertion
Ref Expression
ablfac1a  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 ( S `  P ) )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
Distinct variable groups:    x, p, B    ph, p, x    A, p, x    O, p, x    P, p, x    G, p, x
Allowed substitution hints:    S( x, p)

Proof of Theorem ablfac1a
StepHypRef Expression
1 id 21 . . . . . . . 8  |-  ( p  =  P  ->  p  =  P )
2 oveq1 6091 . . . . . . . 8  |-  ( p  =  P  ->  (
p  pCnt  ( # `  B
) )  =  ( P  pCnt  ( # `  B
) ) )
31, 2oveq12d 6102 . . . . . . 7  |-  ( p  =  P  ->  (
p ^ ( p 
pCnt  ( # `  B
) ) )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
43breq2d 4227 . . . . . 6  |-  ( p  =  P  ->  (
( O `  x
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  x )  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
54rabbidv 2950 . . . . 5  |-  ( p  =  P  ->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { x  e.  B  |  ( O `
 x )  ||  ( P ^ ( P 
pCnt  ( # `  B
) ) ) } )
6 ablfac1.s . . . . 5  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
7 ablfac1.b . . . . . . 7  |-  B  =  ( Base `  G
)
8 fvex 5745 . . . . . . 7  |-  ( Base `  G )  e.  _V
97, 8eqeltri 2508 . . . . . 6  |-  B  e. 
_V
109rabex 4357 . . . . 5  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
115, 6, 10fvmpt3i 5812 . . . 4  |-  ( P  e.  A  ->  ( S `  P )  =  { x  e.  B  |  ( O `  x )  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) } )
1211adantl 454 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  ( S `  P )  =  { x  e.  B  |  ( O `  x )  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) } )
1312fveq2d 5735 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 ( S `  P ) )  =  ( # `  {
x  e.  B  | 
( O `  x
)  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) } ) )
14 ablfac1.o . . . 4  |-  O  =  ( od `  G
)
15 eqid 2438 . . . 4  |-  { x  e.  B  |  ( O `  x )  ||  ( P ^ ( P  pCnt  ( # `  B
) ) ) }  =  { x  e.  B  |  ( O `
 x )  ||  ( P ^ ( P 
pCnt  ( # `  B
) ) ) }
16 eqid 2438 . . . 4  |-  { x  e.  B  |  ( O `  x )  ||  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) }  =  { x  e.  B  |  ( O `
 x )  ||  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) }
17 ablfac1.g . . . . 5  |-  ( ph  ->  G  e.  Abel )
1817adantr 453 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  G  e.  Abel )
19 ablfac1.f . . . . . . 7  |-  ( ph  ->  B  e.  Fin )
20 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
21 eqid 2438 . . . . . . 7  |-  ( P ^ ( P  pCnt  (
# `  B )
) )  =  ( P ^ ( P 
pCnt  ( # `  B
) ) )
22 eqid 2438 . . . . . . 7  |-  ( (
# `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) )  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
237, 14, 6, 17, 19, 20, 21, 22ablfac1lem 15631 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  (
( ( P ^
( P  pCnt  ( # `
 B ) ) )  e.  NN  /\  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )  e.  NN )  /\  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )  =  1  /\  ( # `
 B )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  x.  ( (
# `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) ) ) )
2423simp1d 970 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  e.  NN  /\  ( (
# `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) )  e.  NN ) )
2524simpld 447 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  e.  NN )
2624simprd 451 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) )  e.  NN )
2723simp2d 971 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )  =  1 )
2823simp3d 972 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  x.  ( (
# `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) ) )
297, 14, 15, 16, 18, 25, 26, 27, 28ablfacrp2 15630 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  { x  e.  B  |  ( O `  x )  ||  ( P ^ ( P  pCnt  ( # `  B
) ) ) } )  =  ( P ^ ( P  pCnt  (
# `  B )
) )  /\  ( # `
 { x  e.  B  |  ( O `
 x )  ||  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) } )  =  ( (
# `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) ) )
3029simpld 447 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 { x  e.  B  |  ( O `
 x )  ||  ( P ^ ( P 
pCnt  ( # `  B
) ) ) } )  =  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3113, 30eqtrd 2470 1  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 ( S `  P ) )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   {crab 2711   _Vcvv 2958    C_ wss 3322   class class class wbr 4215    e. cmpt 4269   ` cfv 5457  (class class class)co 6084   Fincfn 7112   1c1 8996    x. cmul 9000    / cdiv 9682   NNcn 10005   ^cexp 11387   #chash 11623    || cdivides 12857    gcd cgcd 13011   Primecprime 13084    pCnt cpc 13215   Basecbs 13474   odcod 15168   Abelcabel 15418
This theorem is referenced by:  ablfac1c  15634  ablfac1eu  15636  ablfaclem3  15650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732  df-er 6908  df-ec 6910  df-qs 6914  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-acn 7834  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-dvds 12858  df-gcd 13012  df-prm 13085  df-pc 13216  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-0g 13732  df-mnd 14695  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mulg 14820  df-subg 14946  df-eqg 14948  df-ga 15072  df-cntz 15121  df-od 15172  df-lsm 15275  df-pj1 15276  df-cmn 15419  df-abl 15420
  Copyright terms: Public domain W3C validator