MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Unicode version

Theorem ablfaclem2 15644
Description: Lemma for ablfac 15646. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac.o  |-  O  =  ( od `  G
)
ablfac.a  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac.w  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
ablfaclem2.f  |-  ( ph  ->  F : A -->Word  C )
ablfaclem2.q  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  ( W `  ( S `  y ) ) )
ablfaclem2.l  |-  L  = 
U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) )
ablfaclem2.g  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) -1-1-onto-> L )
Assertion
Ref Expression
ablfaclem2  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Distinct variable groups:    s, p, x, y, A    F, s    g, r, s, y, S   
g, p, w, x, B, r, s    O, p, x    C, g, p, s    y, w, C, x    W, p, w, x, y    H, s    ph, p, s, w, x, y    g, G, p, r, s, w, x, y
Allowed substitution hints:    ph( g, r)    A( w, g, r)    B( y)    C( r)    S( x, w, p)    F( x, y, w, g, r, p)    H( x, y, w, g, r, p)    L( x, y, w, g, s, r, p)    O( y, w, g, s, r)    W( g, s, r)

Proof of Theorem ablfaclem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . . 4  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 15417 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 ablfac.b . . . . 5  |-  B  =  ( Base `  G
)
43subgid 14946 . . . 4  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
51, 2, 43syl 19 . . 3  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
6 ablfac.c . . . 4  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
7 ablfac.2 . . . 4  |-  ( ph  ->  B  e.  Fin )
8 ablfac.o . . . 4  |-  O  =  ( od `  G
)
9 ablfac.a . . . 4  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
10 ablfac.s . . . 4  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
11 ablfac.w . . . 4  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
123, 6, 1, 7, 8, 9, 10, 11ablfaclem1 15643 . . 3  |-  ( B  e.  (SubGrp `  G
)  ->  ( W `  B )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  B ) } )
135, 12syl 16 . 2  |-  ( ph  ->  ( W `  B
)  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) } )
14 ablfaclem2.f . . . . . . . . . . . . . 14  |-  ( ph  ->  F : A -->Word  C )
1514ffvelrnda 5870 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e. Word  C )
16 wrdf 11733 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e. Word  C  ->  ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C )
1715, 16syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C )
18 fdm 5595 . . . . . . . . . . . . . 14  |-  ( ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C  ->  dom  ( F `
 y )  =  ( 0..^ ( # `  ( F `  y
) ) ) )
1917, 18syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  dom  ( F `  y )  =  ( 0..^ (
# `  ( F `  y ) ) ) )
2019feq2d 5581 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
) : dom  ( F `  y ) --> C 
<->  ( F `  y
) : ( 0..^ ( # `  ( F `  y )
) ) --> C ) )
2117, 20mpbird 224 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : dom  ( F `  y ) --> C )
2221ffvelrnda 5870 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  dom  ( F `  y ) )  -> 
( ( F `  y ) `  z
)  e.  C )
2322anasss 629 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  dom  ( F `  y ) ) )  ->  ( ( F `
 y ) `  z )  e.  C
)
2423ralrimivva 2798 . . . . . . . 8  |-  ( ph  ->  A. y  e.  A  A. z  e.  dom  ( F `  y ) ( ( F `  y ) `  z
)  e.  C )
25 eqid 2436 . . . . . . . . 9  |-  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  =  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)
2625fmpt2x 6417 . . . . . . . 8  |-  ( A. y  e.  A  A. z  e.  dom  ( F `
 y ) ( ( F `  y
) `  z )  e.  C  <->  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y )
) --> C )
2724, 26sylib 189 . . . . . . 7  |-  ( ph  ->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) ) --> C )
28 ablfaclem2.l . . . . . . . 8  |-  L  = 
U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) )
2928feq2i 5586 . . . . . . 7  |-  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) : L --> C 
<->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) ) --> C )
3027, 29sylibr 204 . . . . . 6  |-  ( ph  ->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : L --> C )
31 ablfaclem2.g . . . . . . 7  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) -1-1-onto-> L )
32 f1of 5674 . . . . . . 7  |-  ( H : ( 0..^ (
# `  L )
)
-1-1-onto-> L  ->  H : ( 0..^ ( # `  L
) ) --> L )
3331, 32syl 16 . . . . . 6  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) --> L )
34 fco 5600 . . . . . 6  |-  ( ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : L --> C  /\  H : ( 0..^ ( # `  L
) ) --> L )  ->  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H ) : ( 0..^ (
# `  L )
) --> C )
3530, 33, 34syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H ) : ( 0..^ ( # `  L ) ) --> C )
36 iswrdi 11731 . . . . 5  |-  ( ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) : ( 0..^ ( # `  L
) ) --> C  -> 
( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C )
3735, 36syl 16 . . . 4  |-  ( ph  ->  ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C )
38 ablfaclem2.q . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  ( W `  ( S `  y ) ) )
3938r19.21bi 2804 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  ( W `  ( S `  y )
) )
40 ssrab2 3428 . . . . . . . . . . . . . . . . . . . 20  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  Prime
419, 40eqsstri 3378 . . . . . . . . . . . . . . . . . . 19  |-  A  C_  Prime
4241a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  Prime )
433, 8, 10, 1, 7, 42ablfac1b 15628 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G dom DProd  S )
44 fvex 5742 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  G )  e.  _V
453, 44eqeltri 2506 . . . . . . . . . . . . . . . . . . . 20  |-  B  e. 
_V
4645rabex 4354 . . . . . . . . . . . . . . . . . . 19  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
4746, 10dmmpti 5574 . . . . . . . . . . . . . . . . . 18  |-  dom  S  =  A
4847a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  S  =  A )
4943, 48dprdf2 15565 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
5049ffvelrnda 5870 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  A )  ->  ( S `  y )  e.  (SubGrp `  G )
)
513, 6, 1, 7, 8, 9, 10, 11ablfaclem1 15643 . . . . . . . . . . . . . . 15  |-  ( ( S `  y )  e.  (SubGrp `  G
)  ->  ( W `  ( S `  y
) )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  y ) ) } )
5250, 51syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  A )  ->  ( W `  ( S `  y ) )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 y ) ) } )
5339, 52eleqtrd 2512 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 y ) ) } )
54 breq2 4216 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( F `  y )  ->  ( G dom DProd  s  <->  G dom DProd  ( F `  y ) ) )
55 oveq2 6089 . . . . . . . . . . . . . . . . 17  |-  ( s  =  ( F `  y )  ->  ( G DProd  s )  =  ( G DProd  ( F `  y ) ) )
5655eqeq1d 2444 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( F `  y )  ->  (
( G DProd  s )  =  ( S `  y )  <->  ( G DProd  ( F `  y ) )  =  ( S `
 y ) ) )
5754, 56anbi12d 692 . . . . . . . . . . . . . . 15  |-  ( s  =  ( F `  y )  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  y ) )  <->  ( G dom DProd  ( F `  y
)  /\  ( G DProd  ( F `  y ) )  =  ( S `
 y ) ) ) )
5857elrab 3092 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  ( S `  y ) ) }  <->  ( ( F `  y )  e. Word  C  /\  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) ) )
5958simprbi 451 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  ( S `  y ) ) }  ->  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) )
6053, 59syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) )
6160simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  G dom DProd  ( F `  y
) )
62 dprdf 15564 . . . . . . . . . . 11  |-  ( G dom DProd  ( F `  y )  ->  ( F `  y ) : dom  ( F `  y ) --> (SubGrp `  G ) )
6361, 62syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : dom  ( F `  y ) --> (SubGrp `  G ) )
6463ffvelrnda 5870 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  dom  ( F `  y ) )  -> 
( ( F `  y ) `  z
)  e.  (SubGrp `  G ) )
6564anasss 629 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  dom  ( F `  y ) ) )  ->  ( ( F `
 y ) `  z )  e.  (SubGrp `  G ) )
6663feqmptd 5779 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) )
6761, 66breqtrd 4236 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  G dom DProd  ( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) )
6849feqmptd 5779 . . . . . . . . . 10  |-  ( ph  ->  S  =  ( y  e.  A  |->  ( S `
 y ) ) )
6966oveq2d 6097 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( F `  y
) )  =  ( G DProd  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) )
7060simprd 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( F `  y
) )  =  ( S `  y ) )
7169, 70eqtr3d 2470 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) )  =  ( S `  y
) )
7271mpteq2dva 4295 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |->  ( G DProd  ( z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
) ) )  =  ( y  e.  A  |->  ( S `  y
) ) )
7368, 72eqtr4d 2471 . . . . . . . . 9  |-  ( ph  ->  S  =  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )
7443, 73breqtrd 4236 . . . . . . . 8  |-  ( ph  ->  G dom DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )
7565, 67, 74dprd2d2 15602 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  /\  ( G DProd  ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) )  =  ( G DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) ) ) )
7675simpld 446 . . . . . 6  |-  ( ph  ->  G dom DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) )
77 fdm 5595 . . . . . . 7  |-  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) : L --> C  ->  dom  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  =  L )
7830, 77syl 16 . . . . . 6  |-  ( ph  ->  dom  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  =  L )
7976, 78, 31dprdf1o 15590 . . . . 5  |-  ( ph  ->  ( G dom DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  ( G DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) ) )
8079simpld 446 . . . 4  |-  ( ph  ->  G dom DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )
8179simprd 450 . . . . 5  |-  ( ph  ->  ( G DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  ( G DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) )
8275simprd 450 . . . . 5  |-  ( ph  ->  ( G DProd  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
) )  =  ( G DProd  ( y  e.  A  |->  ( G DProd  (
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) ) ) ) )
8373oveq2d 6097 . . . . . 6  |-  ( ph  ->  ( G DProd  S )  =  ( G DProd  (
y  e.  A  |->  ( G DProd  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) ) ) )
84 ssid 3367 . . . . . . . 8  |-  A  C_  A
8584a1i 11 . . . . . . 7  |-  ( ph  ->  A  C_  A )
863, 8, 10, 1, 7, 42, 9, 85ablfac1c 15629 . . . . . 6  |-  ( ph  ->  ( G DProd  S )  =  B )
8783, 86eqtr3d 2470 . . . . 5  |-  ( ph  ->  ( G DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )  =  B )
8881, 82, 873eqtrd 2472 . . . 4  |-  ( ph  ->  ( G DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B )
89 breq2 4216 . . . . . 6  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( G dom DProd  s  <-> 
G dom DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) ) )
90 oveq2 6089 . . . . . . 7  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( G DProd  s
)  =  ( G DProd 
( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H ) ) )
9190eqeq1d 2444 . . . . . 6  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( ( G DProd 
s )  =  B  <-> 
( G DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) )
9289, 91anbi12d 692 . . . . 5  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( ( G dom DProd  s  /\  ( G DProd  s )  =  B )  <->  ( G dom DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) ) )
9392rspcev 3052 . . . 4  |-  ( ( ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C  /\  ( G dom DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )
9437, 80, 88, 93syl12anc 1182 . . 3  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
95 rabn0 3647 . . 3  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  B ) }  =/=  (/)  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
9694, 95sylibr 204 . 2  |-  ( ph  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) }  =/=  (/) )
9713, 96eqnetrd 2619 1  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   U_ciun 4093   class class class wbr 4212    e. cmpt 4266    X. cxp 4876   dom cdm 4878   ran crn 4879    o. ccom 4882   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   Fincfn 7109   0cc0 8990  ..^cfzo 11135   ^cexp 11382   #chash 11618  Word cword 11717    || cdivides 12852   Primecprime 13079    pCnt cpc 13210   Basecbs 13469   ↾s cress 13470   Grpcgrp 14685  SubGrpcsubg 14938   odcod 15163   pGrp cpgp 15165   Abelcabel 15413  CycGrpccyg 15487   DProd cdprd 15554
This theorem is referenced by:  ablfaclem3  15645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-word 11723  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-0g 13727  df-gsum 13728  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-eqg 14943  df-ghm 15004  df-gim 15046  df-ga 15067  df-cntz 15116  df-oppg 15142  df-od 15167  df-lsm 15270  df-pj1 15271  df-cmn 15414  df-abl 15415  df-dprd 15556
  Copyright terms: Public domain W3C validator