MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Unicode version

Theorem ablfacrp2 15617
Description: The factors  K ,  L of ablfacrp 15616 have the expected orders (which allows for repeated application to decompose  G into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b  |-  B  =  ( Base `  G
)
ablfacrp.o  |-  O  =  ( od `  G
)
ablfacrp.k  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
ablfacrp.l  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
ablfacrp.g  |-  ( ph  ->  G  e.  Abel )
ablfacrp.m  |-  ( ph  ->  M  e.  NN )
ablfacrp.n  |-  ( ph  ->  N  e.  NN )
ablfacrp.1  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
ablfacrp.2  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
Assertion
Ref Expression
ablfacrp2  |-  ( ph  ->  ( ( # `  K
)  =  M  /\  ( # `  L )  =  N ) )
Distinct variable groups:    x, B    x, G    x, O    x, M    x, N    ph, x
Allowed substitution hints:    K( x)    L( x)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
2 ablfacrp.m . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
32nnnn0d 10266 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
4 ablfacrp.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
54nnnn0d 10266 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
63, 5nn0mulcld 10271 . . . . . . 7  |-  ( ph  ->  ( M  x.  N
)  e.  NN0 )
71, 6eqeltrd 2509 . . . . . 6  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
8 ablfacrp.b . . . . . . . 8  |-  B  =  ( Base `  G
)
9 fvex 5734 . . . . . . . 8  |-  ( Base `  G )  e.  _V
108, 9eqeltri 2505 . . . . . . 7  |-  B  e. 
_V
11 hashclb 11633 . . . . . . 7  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
1210, 11ax-mp 8 . . . . . 6  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
137, 12sylibr 204 . . . . 5  |-  ( ph  ->  B  e.  Fin )
14 ablfacrp.k . . . . . 6  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
15 ssrab2 3420 . . . . . 6  |-  { x  e.  B  |  ( O `  x )  ||  M }  C_  B
1614, 15eqsstri 3370 . . . . 5  |-  K  C_  B
17 ssfi 7321 . . . . 5  |-  ( ( B  e.  Fin  /\  K  C_  B )  ->  K  e.  Fin )
1813, 16, 17sylancl 644 . . . 4  |-  ( ph  ->  K  e.  Fin )
19 hashcl 11631 . . . 4  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
2018, 19syl 16 . . 3  |-  ( ph  ->  ( # `  K
)  e.  NN0 )
21 ablfacrp.g . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
222nnzd 10366 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
23 ablfacrp.o . . . . . . . . 9  |-  O  =  ( od `  G
)
2423, 8oddvdssubg 15462 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  M  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G ) )
2521, 22, 24syl2anc 643 . . . . . . 7  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G
) )
2614, 25syl5eqel 2519 . . . . . 6  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
278lagsubg 14994 . . . . . 6  |-  ( ( K  e.  (SubGrp `  G )  /\  B  e.  Fin )  ->  ( # `
 K )  ||  ( # `  B ) )
2826, 13, 27syl2anc 643 . . . . 5  |-  ( ph  ->  ( # `  K
)  ||  ( # `  B
) )
292nncnd 10008 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
304nncnd 10008 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
3129, 30mulcomd 9101 . . . . . 6  |-  ( ph  ->  ( M  x.  N
)  =  ( N  x.  M ) )
321, 31eqtrd 2467 . . . . 5  |-  ( ph  ->  ( # `  B
)  =  ( N  x.  M ) )
3328, 32breqtrd 4228 . . . 4  |-  ( ph  ->  ( # `  K
)  ||  ( N  x.  M ) )
34 ablfacrp.l . . . . 5  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
35 ablfacrp.1 . . . . 5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
368, 23, 14, 34, 21, 2, 4, 35, 1ablfacrplem 15615 . . . 4  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
3720nn0zd 10365 . . . . 5  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
384nnzd 10366 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
39 coprmdvds 13094 . . . . 5  |-  ( ( ( # `  K
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( # `  K
)  ||  ( N  x.  M )  /\  (
( # `  K )  gcd  N )  =  1 )  ->  ( # `
 K )  ||  M ) )
4037, 38, 22, 39syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( ( # `  K )  ||  ( N  x.  M )  /\  ( ( # `  K
)  gcd  N )  =  1 )  -> 
( # `  K ) 
||  M ) )
4133, 36, 40mp2and 661 . . 3  |-  ( ph  ->  ( # `  K
)  ||  M )
4223, 8oddvdssubg 15462 . . . . . . . . . . 11  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
4321, 38, 42syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
) )
4434, 43syl5eqel 2519 . . . . . . . . 9  |-  ( ph  ->  L  e.  (SubGrp `  G ) )
458lagsubg 14994 . . . . . . . . 9  |-  ( ( L  e.  (SubGrp `  G )  /\  B  e.  Fin )  ->  ( # `
 L )  ||  ( # `  B ) )
4644, 13, 45syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( # `  L
)  ||  ( # `  B
) )
4746, 1breqtrd 4228 . . . . . . 7  |-  ( ph  ->  ( # `  L
)  ||  ( M  x.  N ) )
48 gcdcom 13012 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( N  gcd  M ) )
4922, 38, 48syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( M  gcd  N
)  =  ( N  gcd  M ) )
5049, 35eqtr3d 2469 . . . . . . . 8  |-  ( ph  ->  ( N  gcd  M
)  =  1 )
518, 23, 34, 14, 21, 4, 2, 50, 32ablfacrplem 15615 . . . . . . 7  |-  ( ph  ->  ( ( # `  L
)  gcd  M )  =  1 )
52 ssrab2 3420 . . . . . . . . . . . 12  |-  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
5334, 52eqsstri 3370 . . . . . . . . . . 11  |-  L  C_  B
54 ssfi 7321 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  L  C_  B )  ->  L  e.  Fin )
5513, 53, 54sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Fin )
56 hashcl 11631 . . . . . . . . . 10  |-  ( L  e.  Fin  ->  ( # `
 L )  e. 
NN0 )
5755, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  ( # `  L
)  e.  NN0 )
5857nn0zd 10365 . . . . . . . 8  |-  ( ph  ->  ( # `  L
)  e.  ZZ )
59 coprmdvds 13094 . . . . . . . 8  |-  ( ( ( # `  L
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( # `  L
)  ||  ( M  x.  N )  /\  (
( # `  L )  gcd  M )  =  1 )  ->  ( # `
 L )  ||  N ) )
6058, 22, 38, 59syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( ( ( # `  L )  ||  ( M  x.  N )  /\  ( ( # `  L
)  gcd  M )  =  1 )  -> 
( # `  L ) 
||  N ) )
6147, 51, 60mp2and 661 . . . . . 6  |-  ( ph  ->  ( # `  L
)  ||  N )
62 dvdscmul 12868 . . . . . . 7  |-  ( ( ( # `  L
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( # `  L ) 
||  N  ->  ( M  x.  ( # `  L
) )  ||  ( M  x.  N )
) )
6358, 38, 22, 62syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( # `  L
)  ||  N  ->  ( M  x.  ( # `  L ) )  ||  ( M  x.  N
) ) )
6461, 63mpd 15 . . . . 5  |-  ( ph  ->  ( M  x.  ( # `
 L ) ) 
||  ( M  x.  N ) )
65 eqid 2435 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
66 eqid 2435 . . . . . . . . . 10  |-  ( LSSum `  G )  =  (
LSSum `  G )
678, 23, 14, 34, 21, 2, 4, 35, 1, 65, 66ablfacrp 15616 . . . . . . . . 9  |-  ( ph  ->  ( ( K  i^i  L )  =  { ( 0g `  G ) }  /\  ( K ( LSSum `  G ) L )  =  B ) )
6867simprd 450 . . . . . . . 8  |-  ( ph  ->  ( K ( LSSum `  G ) L )  =  B )
6968fveq2d 5724 . . . . . . 7  |-  ( ph  ->  ( # `  ( K ( LSSum `  G
) L ) )  =  ( # `  B
) )
70 eqid 2435 . . . . . . . 8  |-  (Cntz `  G )  =  (Cntz `  G )
7167simpld 446 . . . . . . . 8  |-  ( ph  ->  ( K  i^i  L
)  =  { ( 0g `  G ) } )
7270, 21, 26, 44ablcntzd 15464 . . . . . . . 8  |-  ( ph  ->  K  C_  ( (Cntz `  G ) `  L
) )
7366, 65, 70, 26, 44, 71, 72, 18, 55lsmhash 15329 . . . . . . 7  |-  ( ph  ->  ( # `  ( K ( LSSum `  G
) L ) )  =  ( ( # `  K )  x.  ( # `
 L ) ) )
7469, 73eqtr3d 2469 . . . . . 6  |-  ( ph  ->  ( # `  B
)  =  ( (
# `  K )  x.  ( # `  L
) ) )
7574, 1eqtr3d 2469 . . . . 5  |-  ( ph  ->  ( ( # `  K
)  x.  ( # `  L ) )  =  ( M  x.  N
) )
7664, 75breqtrrd 4230 . . . 4  |-  ( ph  ->  ( M  x.  ( # `
 L ) ) 
||  ( ( # `  K )  x.  ( # `
 L ) ) )
7765subg0cl 14944 . . . . . . . 8  |-  ( L  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  L
)
78 ne0i 3626 . . . . . . . 8  |-  ( ( 0g `  G )  e.  L  ->  L  =/=  (/) )
7944, 77, 783syl 19 . . . . . . 7  |-  ( ph  ->  L  =/=  (/) )
80 hashnncl 11637 . . . . . . . 8  |-  ( L  e.  Fin  ->  (
( # `  L )  e.  NN  <->  L  =/=  (/) ) )
8155, 80syl 16 . . . . . . 7  |-  ( ph  ->  ( ( # `  L
)  e.  NN  <->  L  =/=  (/) ) )
8279, 81mpbird 224 . . . . . 6  |-  ( ph  ->  ( # `  L
)  e.  NN )
8382nnne0d 10036 . . . . 5  |-  ( ph  ->  ( # `  L
)  =/=  0 )
84 dvdsmulcr 12871 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( # `  K )  e.  ZZ  /\  (
( # `  L )  e.  ZZ  /\  ( # `
 L )  =/=  0 ) )  -> 
( ( M  x.  ( # `  L ) )  ||  ( (
# `  K )  x.  ( # `  L
) )  <->  M  ||  ( # `
 K ) ) )
8522, 37, 58, 83, 84syl112anc 1188 . . . 4  |-  ( ph  ->  ( ( M  x.  ( # `  L ) )  ||  ( (
# `  K )  x.  ( # `  L
) )  <->  M  ||  ( # `
 K ) ) )
8676, 85mpbid 202 . . 3  |-  ( ph  ->  M  ||  ( # `  K ) )
87 dvdseq 12889 . . 3  |-  ( ( ( ( # `  K
)  e.  NN0  /\  M  e.  NN0 )  /\  ( ( # `  K
)  ||  M  /\  M  ||  ( # `  K
) ) )  -> 
( # `  K )  =  M )
8820, 3, 41, 86, 87syl22anc 1185 . 2  |-  ( ph  ->  ( # `  K
)  =  M )
89 dvdsmulc 12869 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( # `  K ) 
||  M  ->  (
( # `  K )  x.  N )  ||  ( M  x.  N
) ) )
9037, 22, 38, 89syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  M  ->  ( ( # `  K
)  x.  N ) 
||  ( M  x.  N ) ) )
9141, 90mpd 15 . . . . 5  |-  ( ph  ->  ( ( # `  K
)  x.  N ) 
||  ( M  x.  N ) )
9291, 75breqtrrd 4230 . . . 4  |-  ( ph  ->  ( ( # `  K
)  x.  N ) 
||  ( ( # `  K )  x.  ( # `
 L ) ) )
9388, 2eqeltrd 2509 . . . . . 6  |-  ( ph  ->  ( # `  K
)  e.  NN )
9493nnne0d 10036 . . . . 5  |-  ( ph  ->  ( # `  K
)  =/=  0 )
95 dvdscmulr 12870 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( # `  L )  e.  ZZ  /\  (
( # `  K )  e.  ZZ  /\  ( # `
 K )  =/=  0 ) )  -> 
( ( ( # `  K )  x.  N
)  ||  ( ( # `
 K )  x.  ( # `  L
) )  <->  N  ||  ( # `
 L ) ) )
9638, 58, 37, 94, 95syl112anc 1188 . . . 4  |-  ( ph  ->  ( ( ( # `  K )  x.  N
)  ||  ( ( # `
 K )  x.  ( # `  L
) )  <->  N  ||  ( # `
 L ) ) )
9792, 96mpbid 202 . . 3  |-  ( ph  ->  N  ||  ( # `  L ) )
98 dvdseq 12889 . . 3  |-  ( ( ( ( # `  L
)  e.  NN0  /\  N  e.  NN0 )  /\  ( ( # `  L
)  ||  N  /\  N  ||  ( # `  L
) ) )  -> 
( # `  L )  =  N )
9957, 5, 61, 97, 98syl22anc 1185 . 2  |-  ( ph  ->  ( # `  L
)  =  N )
10088, 99jca 519 1  |-  ( ph  ->  ( ( # `  K
)  =  M  /\  ( # `  L )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   {crab 2701   _Vcvv 2948    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Fincfn 7101   0cc0 8982   1c1 8983    x. cmul 8987   NNcn 9992   NN0cn0 10213   ZZcz 10274   #chash 11610    || cdivides 12844    gcd cgcd 12998   Basecbs 13461   0gc0g 13715  SubGrpcsubg 14930  Cntzccntz 15106   odcod 15155   LSSumclsm 15260   Abelcabel 15405
This theorem is referenced by:  ablfac1a  15619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-mnd 14682  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-eqg 14935  df-ga 15059  df-cntz 15108  df-od 15159  df-lsm 15262  df-pj1 15263  df-cmn 15406  df-abl 15407
  Copyright terms: Public domain W3C validator