MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Unicode version

Theorem ablo4 20954
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1  |-  X  =  ran  G
Assertion
Ref Expression
ablo4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 738 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  A  e.  X
)
2 simprlr 739 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
3 simprrl 740 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
41, 2, 33jca 1132 . . . . 5  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )
5 ablcom.1 . . . . . 6  |-  X  =  ran  G
65ablo32 20953 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
74, 6syldan 456 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
87oveq1d 5873 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( ( A G C ) G B ) G D ) )
9 ablogrpo 20951 . . . 4  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
105grpocl 20867 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
11103expb 1152 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  X
)
1211adantrr 697 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G B )  e.  X
)
13 simprrl 740 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
14 simprrr 741 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  D  e.  X
)
1512, 13, 143jca 1132 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X ) )
165grpoass 20870 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X )
)  ->  ( (
( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
1715, 16syldan 456 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
189, 17sylan 457 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
195grpocl 20867 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
20193expb 1152 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( A G C )  e.  X
)
2120adantrlr 703 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( A G C )  e.  X )
2221adantrrr 705 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G C )  e.  X
)
23 simprlr 739 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
2422, 23, 143jca 1132 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X ) )
255grpoass 20870 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X )
)  ->  ( (
( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
2624, 25syldan 456 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
279, 26sylan 457 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
288, 18, 273eqtr3d 2323 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
29283impb 1147 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ran crn 4690  (class class class)co 5858   GrpOpcgr 20853   AbelOpcablo 20948
This theorem is referenced by:  gxdi  20963  rngoa4  21062  vca4  21119  nvadd4  21183  ipdirilem  21407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-grpo 20858  df-ablo 20949
  Copyright terms: Public domain W3C validator