Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Unicode version

Theorem ablo4pnp 26570
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1  |-  X  =  ran  G
abl4pnp.2  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablo4pnp  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 936 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( ( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )
2 abl4pnp.1 . . . . . 6  |-  X  =  ran  G
3 abl4pnp.2 . . . . . 6  |-  D  =  (  /g  `  G
)
42, 3ablomuldiv 20956 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
51, 4sylan2br 462 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( ( A G B ) D C )  =  ( ( A D C ) G B ) )
65adantrrr 705 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
76oveq1d 5873 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( ( A D C ) G B ) D F ) )
8 ablogrpo 20951 . . . . . . 7  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
92grpocl 20867 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
1093expib 1154 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
118, 10syl 15 . . . . . 6  |-  ( G  e.  AbelOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
1211anim1d 547 . . . . 5  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) ) )
13 3anass 938 . . . . 5  |-  ( ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )  <->  ( ( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) )
1412, 13syl6ibr 218 . . . 4  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
) )
1514imp 418 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X ) )
162, 3ablodivdiv4 20958 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
)  ->  ( (
( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
1715, 16syldan 456 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
182, 3grpodivcl 20914 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
19183expib 1154 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X ) )
2019anim1d 547 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  C  e.  X
)  /\  ( B  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) ) )
21 an4 797 . . . . . 6  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  <->  ( ( A  e.  X  /\  C  e.  X )  /\  ( B  e.  X  /\  F  e.  X
) ) )
22 3anass 938 . . . . . 6  |-  ( ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )  <->  ( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) )
2320, 21, 223imtr4g 261 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X
) ) )
2423imp 418 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X ) )
252, 3grpomuldivass 20916 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )
)  ->  ( (
( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
2624, 25syldan 456 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
278, 26sylan 457 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
287, 17, 273eqtr3d 2323 1  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ran crn 4690   ` cfv 5255  (class class class)co 5858   GrpOpcgr 20853    /g cgs 20856   AbelOpcablo 20948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949
  Copyright terms: Public domain W3C validator