Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Unicode version

Theorem ablo4pnp 26453
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1  |-  X  =  ran  G
abl4pnp.2  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablo4pnp  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 938 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( ( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )
2 abl4pnp.1 . . . . . 6  |-  X  =  ran  G
3 abl4pnp.2 . . . . . 6  |-  D  =  (  /g  `  G
)
42, 3ablomuldiv 21838 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
51, 4sylan2br 463 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( ( A G B ) D C )  =  ( ( A D C ) G B ) )
65adantrrr 706 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
76oveq1d 6063 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( ( A D C ) G B ) D F ) )
8 ablogrpo 21833 . . . . . . 7  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
92grpocl 21749 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
1093expib 1156 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
118, 10syl 16 . . . . . 6  |-  ( G  e.  AbelOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
1211anim1d 548 . . . . 5  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) ) )
13 3anass 940 . . . . 5  |-  ( ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )  <->  ( ( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) )
1412, 13syl6ibr 219 . . . 4  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
) )
1514imp 419 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X ) )
162, 3ablodivdiv4 21840 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
)  ->  ( (
( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
1715, 16syldan 457 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
182, 3grpodivcl 21796 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
19183expib 1156 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X ) )
2019anim1d 548 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  C  e.  X
)  /\  ( B  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) ) )
21 an4 798 . . . . . 6  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  <->  ( ( A  e.  X  /\  C  e.  X )  /\  ( B  e.  X  /\  F  e.  X
) ) )
22 3anass 940 . . . . . 6  |-  ( ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )  <->  ( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) )
2320, 21, 223imtr4g 262 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X
) ) )
2423imp 419 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X ) )
252, 3grpomuldivass 21798 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )
)  ->  ( (
( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
2624, 25syldan 457 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
278, 26sylan 458 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
287, 17, 273eqtr3d 2452 1  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4846   ` cfv 5421  (class class class)co 6048   GrpOpcgr 21735    /g cgs 21738   AbelOpcablo 21830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-grpo 21740  df-gid 21741  df-ginv 21742  df-gdiv 21743  df-ablo 21831
  Copyright terms: Public domain W3C validator