MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv Unicode version

Theorem ablodivdiv 21268
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablodivdiv  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( ( A D B ) G C ) )

Proof of Theorem ablodivdiv
StepHypRef Expression
1 ablogrpo 21262 . . 3  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
2 abldiv.1 . . . 4  |-  X  =  ran  G
3 abldiv.3 . . . 4  |-  D  =  (  /g  `  G
)
42, 3grpodivdiv 21226 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )
51, 4sylan 457 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )
6 3ancomb 944 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)
72, 3grpomuldivass 21227 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( A G ( C D B ) ) )
81, 7sylan 457 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( A G ( C D B ) ) )
92, 3ablomuldiv 21267 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( ( A D B ) G C ) )
108, 9eqtr3d 2400 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( A G ( C D B ) )  =  ( ( A D B ) G C ) )
116, 10sylan2b 461 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( C D B ) )  =  ( ( A D B ) G C ) )
125, 11eqtrd 2398 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( ( A D B ) G C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   ran crn 4793   ` cfv 5358  (class class class)co 5981   GrpOpcgr 21164    /g cgs 21167   AbelOpcablo 21259
This theorem is referenced by:  ablodivdiv4  21269  ablonncan  21272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-grpo 21169  df-gid 21170  df-ginv 21171  df-gdiv 21172  df-ablo 21260
  Copyright terms: Public domain W3C validator