MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv4 Structured version   Unicode version

Theorem ablodivdiv4 21910
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablodivdiv4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( A D ( B G C ) ) )

Proof of Theorem ablodivdiv4
StepHypRef Expression
1 ablogrpo 21903 . . 3  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
2 simpl 445 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  G  e.  GrpOp
)
3 abldiv.1 . . . . . 6  |-  X  =  ran  G
4 abldiv.3 . . . . . 6  |-  D  =  (  /g  `  G
)
53, 4grpodivcl 21866 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
653adant3r3 1165 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  X
)
7 simpr3 966 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
8 eqid 2442 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
93, 8, 4grpodivval 21862 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A D B )  e.  X  /\  C  e.  X )  ->  (
( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G
) `  C )
) )
102, 6, 7, 9syl3anc 1185 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
111, 10sylan 459 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
12 simpr1 964 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
13 simpr2 965 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
14 simp3 960 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  C  e.  X )
153, 8grpoinvcl 21845 . . . . 5  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
161, 14, 15syl2an 465 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
1712, 13, 163jca 1135 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G ) `
 C )  e.  X ) )
183, 4ablodivdiv 21909 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) )  -> 
( A D ( B D ( ( inv `  G ) `
 C ) ) )  =  ( ( A D B ) G ( ( inv `  G ) `  C
) ) )
1917, 18syldan 458 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D ( ( inv `  G
) `  C )
) )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
203, 8, 4grpodivinv 21863 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
211, 20syl3an1 1218 . . . 4  |-  ( ( G  e.  AbelOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
22213adant3r1 1163 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
2322oveq2d 6126 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D ( ( inv `  G
) `  C )
) )  =  ( A D ( B G C ) ) )
2411, 19, 233eqtr2d 2480 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( A D ( B G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   ran crn 4908   ` cfv 5483  (class class class)co 6110   GrpOpcgr 21805   invcgn 21807    /g cgs 21808   AbelOpcablo 21900
This theorem is referenced by:  ablodiv32  21911  ablonnncan  21912  ablo4pnp  26593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-grpo 21810  df-gid 21811  df-ginv 21812  df-gdiv 21813  df-ablo 21901
  Copyright terms: Public domain W3C validator