MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpncan2 Structured version   Unicode version

Theorem ablpncan2 15440
Description: Cancellation law for subtraction. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablpncan2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .-  X )  =  Y )

Proof of Theorem ablpncan2
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Abel )
2 simp2 958 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 959 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
5 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
6 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
74, 5, 6abladdsub 15439 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  Y )  .-  X )  =  ( ( X  .-  X
)  .+  Y )
)
81, 2, 3, 2, 7syl13anc 1186 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .-  X )  =  ( ( X 
.-  X )  .+  Y ) )
9 ablgrp 15417 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
101, 9syl 16 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
11 eqid 2436 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
124, 11, 6grpsubid 14873 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1310, 2, 12syl2anc 643 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  X )  =  ( 0g `  G
) )
1413oveq1d 6096 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .-  X
)  .+  Y )  =  ( ( 0g
`  G )  .+  Y ) )
154, 5, 11grplid 14835 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
1610, 3, 15syl2anc 643 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 0g `  G
)  .+  Y )  =  Y )
178, 14, 163eqtrd 2472 1  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .-  X )  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   0gc0g 13723   Grpcgrp 14685   -gcsg 14688   Abelcabel 15413
This theorem is referenced by:  lssvancl1  16021  lspprabs  16167  lsmcv  16213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-sbg 14814  df-cmn 15414  df-abl 15415
  Copyright terms: Public domain W3C validator