Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex Unicode version

Theorem abrexex 5779
 Description: Existence of a class abstraction of existentially restricted sets. is normally a free-variable parameter in the class expression substituted for , which can be thought of as . This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5761, funex 5759, fnex 5757, resfunexg 5753, and funimaexg 5345. See also abrexex2 5796. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1
Assertion
Ref Expression
abrexex
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2296 . . 3
21rnmpt 4941 . 2
3 abrexex.1 . . . 4
43mptex 5762 . . 3
54rnex 4958 . 2
62, 5eqeltrri 2367 1
 Colors of variables: wff set class Syntax hints:   wceq 1632   wcel 1696  cab 2282  wrex 2557  cvv 2801   cmpt 4093   crn 4706 This theorem is referenced by:  ab2rexex  6016  kmlem10  7801  shftfval  11581  dvdsrval  15443  cmpsublem  17142  cmpsub  17143  ptrescn  17349  heibor1lem  26636  eldiophb  26939  pointsetN  30552 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
 Copyright terms: Public domain W3C validator