MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Unicode version

Theorem abrexex2g 5768
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Distinct variable groups:    x, A, y    x, V, y    x, W, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1605 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2419 . . . . 5  |-  F/_ y A
3 nfs1v 2045 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrex 2598 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1860 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2564 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2401 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2270 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2568 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2395 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2306 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 3907 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 iunexg 5767 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  U_ x  e.  A  { y  |  ph }  e.  _V )
1412, 13syl5eqelr 2368 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V )
1511, 14syl5eqel 2367 1  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   [wsb 1629    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788   U_ciun 3905
This theorem is referenced by:  ptrescn  17333  ab2rexexg2  25121  ab2rexex2g  25132  intopcoaconlem3b  25538  intopcoaconlem3  25539  intopcoaconb  25540  abrexex2gOLD  26404  sdclem2  26452  sdclem1  26453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
  Copyright terms: Public domain W3C validator