MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Unicode version

Theorem abrexex2g 5784
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Distinct variable groups:    x, A, y    x, V, y    x, W, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1609 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2432 . . . . 5  |-  F/_ y A
3 nfs1v 2058 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrex 2611 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1872 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2577 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2414 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2283 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2581 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2408 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2319 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 3923 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 iunexg 5783 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  U_ x  e.  A  { y  |  ph }  e.  _V )
1412, 13syl5eqelr 2381 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V )
1511, 14syl5eqel 2380 1  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632   [wsb 1638    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801   U_ciun 3921
This theorem is referenced by:  ptrescn  17349  ab2rexexg2  25224  ab2rexex2g  25235  intopcoaconlem3b  25641  intopcoaconlem3  25642  intopcoaconb  25643  abrexex2gOLD  26507  sdclem2  26555  sdclem1  26556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator