Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexexd Unicode version

Theorem abrexexd 23835
Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
abrexexd.0  |-  F/_ x A
abrexexd.1  |-  ( ph  ->  A  e.  _V )
Assertion
Ref Expression
abrexexd  |-  ( ph  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    ph( x, y)    A( x)    B( x)

Proof of Theorem abrexexd
StepHypRef Expression
1 rnopab 5056 . . 3  |-  ran  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { y  |  E. x ( x  e.  A  /\  y  =  B ) }
2 df-mpt 4210 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
32rneqi 5037 . . 3  |-  ran  (
x  e.  A  |->  B )  =  ran  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
4 df-rex 2656 . . . 4  |-  ( E. x  e.  A  y  =  B  <->  E. x
( x  e.  A  /\  y  =  B
) )
54abbii 2500 . . 3  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. x ( x  e.  A  /\  y  =  B ) }
61, 3, 53eqtr4i 2418 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
7 abrexexd.1 . . 3  |-  ( ph  ->  A  e.  _V )
8 funmpt 5430 . . . 4  |-  Fun  (
x  e.  A  |->  B )
9 eqid 2388 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
109dmmpt 5306 . . . . 5  |-  dom  (
x  e.  A  |->  B )  =  { x  e.  A  |  B  e.  _V }
11 abrexexd.0 . . . . . 6  |-  F/_ x A
1211rabexgfGS 23832 . . . . 5  |-  ( A  e.  _V  ->  { x  e.  A  |  B  e.  _V }  e.  _V )
1310, 12syl5eqel 2472 . . . 4  |-  ( A  e.  _V  ->  dom  ( x  e.  A  |->  B )  e.  _V )
14 funex 5903 . . . 4  |-  ( ( Fun  ( x  e.  A  |->  B )  /\  dom  ( x  e.  A  |->  B )  e.  _V )  ->  ( x  e.  A  |->  B )  e. 
_V )
158, 13, 14sylancr 645 . . 3  |-  ( A  e.  _V  ->  (
x  e.  A  |->  B )  e.  _V )
16 rnexg 5072 . . 3  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
177, 15, 163syl 19 . 2  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  e. 
_V )
186, 17syl5eqelr 2473 1  |-  ( ph  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2374   F/_wnfc 2511   E.wrex 2651   {crab 2654   _Vcvv 2900   {copab 4207    e. cmpt 4208   dom cdm 4819   ran crn 4820   Fun wfun 5389
This theorem is referenced by:  esumc  24243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403
  Copyright terms: Public domain W3C validator