MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Unicode version

Theorem abs1m 12067
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Distinct variable group:    x, A

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 5669 . . . . . 6  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
2 abs0 12018 . . . . . 6  |-  ( abs `  0 )  =  0
31, 2syl6eq 2436 . . . . 5  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
4 oveq2 6029 . . . . 5  |-  ( A  =  0  ->  (
x  x.  A )  =  ( x  x.  0 ) )
53, 4eqeq12d 2402 . . . 4  |-  ( A  =  0  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  0  =  ( x  x.  0
) ) )
65anbi2d 685 . . 3  |-  ( A  =  0  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
76rexbidv 2671 . 2  |-  ( A  =  0  ->  ( E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) ) )
8 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
98cjcld 11929 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( * `  A
)  e.  CC )
10 abscl 12011 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1110adantr 452 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR )
1211recnd 9048 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  CC )
13 abs00 12022 . . . . . 6  |-  ( A  e.  CC  ->  (
( abs `  A
)  =  0  <->  A  =  0 ) )
1413necon3bid 2586 . . . . 5  |-  ( A  e.  CC  ->  (
( abs `  A
)  =/=  0  <->  A  =/=  0 ) )
1514biimpar 472 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =/=  0 )
169, 12, 15divcld 9723 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( * `  A )  /  ( abs `  A ) )  e.  CC )
17 absdiv 12028 . . . . 5  |-  ( ( ( * `  A
)  e.  CC  /\  ( abs `  A )  e.  CC  /\  ( abs `  A )  =/=  0 )  ->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  ( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) ) )
189, 12, 15, 17syl3anc 1184 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  ( ( abs `  ( * `  A
) )  /  ( abs `  ( abs `  A
) ) ) )
19 abscj 12012 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A
) )
2019adantr 452 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
* `  A )
)  =  ( abs `  A ) )
21 absidm 12055 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  ( abs `  A
) )  =  ( abs `  A ) )
2221adantr 452 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  ( abs `  A ) )  =  ( abs `  A
) )
2320, 22oveq12d 6039 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  (
* `  A )
)  /  ( abs `  ( abs `  A
) ) )  =  ( ( abs `  A
)  /  ( abs `  A ) ) )
2412, 15dividd 9721 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  /  ( abs `  A ) )  =  1 )
2518, 23, 243eqtrd 2424 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1 )
268, 9, 12, 15divassd 9758 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  x.  ( * `  A
) )  /  ( abs `  A ) )  =  ( A  x.  ( ( * `  A )  /  ( abs `  A ) ) ) )
2712, 12, 15divcan3d 9728 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( abs `  A ) )
2812sqvald 11448 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
29 absvalsq 12013 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3029adantr 452 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
3128, 30eqtr3d 2422 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( abs `  A
)  x.  ( abs `  A ) )  =  ( A  x.  (
* `  A )
) )
3231oveq1d 6036 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( abs `  A )  x.  ( abs `  A ) )  /  ( abs `  A
) )  =  ( ( A  x.  (
* `  A )
)  /  ( abs `  A ) ) )
3327, 32eqtr3d 2422 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( A  x.  ( * `
 A ) )  /  ( abs `  A
) ) )
3416, 8mulcomd 9043 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
)  =  ( A  x.  ( ( * `
 A )  / 
( abs `  A
) ) ) )
3526, 33, 343eqtr4d 2430 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  =  ( ( ( * `  A
)  /  ( abs `  A ) )  x.  A ) )
36 fveq2 5669 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  ( abs `  x )  =  ( abs `  (
( * `  A
)  /  ( abs `  A ) ) ) )
3736eqeq1d 2396 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  x
)  =  1  <->  ( abs `  ( ( * `
 A )  / 
( abs `  A
) ) )  =  1 ) )
38 oveq1 6028 . . . . . 6  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
x  x.  A )  =  ( ( ( * `  A )  /  ( abs `  A
) )  x.  A
) )
3938eqeq2d 2399 . . . . 5  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( abs `  A
)  =  ( x  x.  A )  <->  ( abs `  A )  =  ( ( ( * `  A )  /  ( abs `  A ) )  x.  A ) ) )
4037, 39anbi12d 692 . . . 4  |-  ( x  =  ( ( * `
 A )  / 
( abs `  A
) )  ->  (
( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) )  <-> 
( ( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) ) )
4140rspcev 2996 . . 3  |-  ( ( ( ( * `  A )  /  ( abs `  A ) )  e.  CC  /\  (
( abs `  (
( * `  A
)  /  ( abs `  A ) ) )  =  1  /\  ( abs `  A )  =  ( ( ( * `
 A )  / 
( abs `  A
) )  x.  A
) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
4216, 25, 35, 41syl12anc 1182 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
43 ax-icn 8983 . . . 4  |-  _i  e.  CC
44 absi 12019 . . . . 5  |-  ( abs `  _i )  =  1
4543mul01i 9189 . . . . . 6  |-  ( _i  x.  0 )  =  0
4645eqcomi 2392 . . . . 5  |-  0  =  ( _i  x.  0 )
4744, 46pm3.2i 442 . . . 4  |-  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) )
48 fveq2 5669 . . . . . . 7  |-  ( x  =  _i  ->  ( abs `  x )  =  ( abs `  _i ) )
4948eqeq1d 2396 . . . . . 6  |-  ( x  =  _i  ->  (
( abs `  x
)  =  1  <->  ( abs `  _i )  =  1 ) )
50 oveq1 6028 . . . . . . 7  |-  ( x  =  _i  ->  (
x  x.  0 )  =  ( _i  x.  0 ) )
5150eqeq2d 2399 . . . . . 6  |-  ( x  =  _i  ->  (
0  =  ( x  x.  0 )  <->  0  =  ( _i  x.  0
) ) )
5249, 51anbi12d 692 . . . . 5  |-  ( x  =  _i  ->  (
( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) )  <-> 
( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) ) )
5352rspcev 2996 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( abs `  _i )  =  1  /\  0  =  ( _i  x.  0 ) ) )  ->  E. x  e.  CC  ( ( abs `  x
)  =  1  /\  0  =  ( x  x.  0 ) ) )
5443, 47, 53mp2an 654 . . 3  |-  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) )
5554a1i 11 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  0  =  ( x  x.  0 ) ) )
567, 42, 55pm2.61ne 2626 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( abs `  x )  =  1  /\  ( abs `  A
)  =  ( x  x.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925   _ici 8926    x. cmul 8929    / cdiv 9610   2c2 9982   ^cexp 11310   *ccj 11829   abscabs 11967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969
  Copyright terms: Public domain W3C validator