MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absefib Unicode version

Theorem absefib 12494
Description: A number is real iff its imaginary exponential has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )

Proof of Theorem absefib
StepHypRef Expression
1 ef0 12388 . . . . 5  |-  ( exp `  0 )  =  1
21eqeq2i 2306 . . . 4  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  1 )
3 imcl 11612 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
43renegcld 9226 . . . . 5  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
5 0re 8854 . . . . 5  |-  0  e.  RR
6 reef11 12415 . . . . 5  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
74, 5, 6sylancl 643 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
82, 7syl5bbr 250 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  -u (
Im `  A )  =  0 ) )
93recnd 8877 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
109negeq0d 9165 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
118, 10bitr4d 247 . 2  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  (
Im `  A )  =  0 ) )
12 ax-icn 8812 . . . . . 6  |-  _i  e.  CC
13 mulcl 8837 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
1412, 13mpan 651 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
15 absef 12493 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
1614, 15syl 15 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
17 replim 11617 . . . . . . . . . 10  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
18 recl 11611 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1918recnd 8877 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
20 mulcl 8837 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
2112, 9, 20sylancr 644 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
2219, 21addcomd 9030 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2317, 22eqtrd 2328 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2423oveq2d 5890 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( _i  x.  ( Im `  A ) )  +  ( Re
`  A ) ) ) )
25 adddi 8842 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2612, 25mp3an1 1264 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2721, 19, 26syl2anc 642 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( ( _i  x.  ( _i  x.  (
Im `  A )
) )  +  ( _i  x.  ( Re
`  A ) ) ) )
28 ixi 9413 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
2928oveq1i 5884 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
30 mulass 8841 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
3112, 12, 30mp3an12 1267 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
329, 31syl 15 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
339mulm1d 9247 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
3429, 32, 333eqtr3a 2352 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
3534oveq1d 5889 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
_i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) )  =  (
-u ( Im `  A )  +  ( _i  x.  ( Re
`  A ) ) ) )
3627, 35eqtrd 2328 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( -u ( Im
`  A )  +  ( _i  x.  (
Re `  A )
) ) )
3724, 36eqtrd 2328 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )
3837fveq2d 5545 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  =  ( Re `  ( -u ( Im `  A
)  +  ( _i  x.  ( Re `  A ) ) ) ) )
394, 18crred 11732 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )  = 
-u ( Im `  A ) )
4038, 39eqtrd 2328 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  = 
-u ( Im `  A ) )
4140fveq2d 5545 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( Re `  ( _i  x.  A
) ) )  =  ( exp `  -u (
Im `  A )
) )
4216, 41eqtrd 2328 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4342eqeq1d 2304 . 2  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  A ) ) )  =  1  <->  ( exp `  -u ( Im `  A
) )  =  1 ) )
44 reim0b 11620 . 2  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
4511, 43, 443bitr4rd 277 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758   -ucneg 9054   Recre 11598   Imcim 11599   abscabs 11735   expce 12359
This theorem is referenced by:  sineq0  19905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368
  Copyright terms: Public domain W3C validator