MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absf Unicode version

Theorem absf 11821
Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absf  |-  abs : CC
--> RR

Proof of Theorem absf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-abs 11721 . 2  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
2 absval 11723 . . 3  |-  ( x  e.  CC  ->  ( abs `  x )  =  ( sqr `  (
x  x.  ( * `
 x ) ) ) )
3 abscl 11763 . . 3  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
42, 3eqeltrrd 2358 . 2  |-  ( x  e.  CC  ->  ( sqr `  ( x  x.  ( * `  x
) ) )  e.  RR )
51, 4fmpti 5683 1  |-  abs : CC
--> RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    x. cmul 8742   *ccj 11581   sqrcsqr 11718   abscabs 11719
This theorem is referenced by:  lo1o1  12006  lo1o12  12007  abscn2  12072  climabs  12077  rlimabs  12082  cnfldds  16389  absabv  16429  cnmet  18281  cnbl0  18283  cnblcld  18284  cnfldms  18285  cnfldnm  18288  abscncf  18405  ovolfsf  18831  ovolctb  18849  iblabslem  19182  iblabs  19183  bddmulibl  19193  dvlip2  19342  c1liplem1  19343  pserulm  19798  psercn2  19799  psercnlem2  19800  psercnlem1  19801  psercn  19802  pserdvlem1  19803  pserdvlem2  19804  pserdv  19805  pserdv2  19806  abelth  19817  efif1olem3  19906  efif1olem4  19907  efifo  19909  eff1olem  19910  logcn  19994  efopnlem1  20003  logtayl  20007  cnnv  21245  cnnvg  21246  cnnvs  21249  cnnvnm  21250  cncph  21397  sblpnf  26951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator