MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Unicode version

Theorem absid 12093
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )

Proof of Theorem absid
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
21recnd 9106 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
3 absval 12035 . . 3  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
42, 3syl 16 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  ( sqr `  ( A  x.  (
* `  A )
) ) )
51cjred 12023 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( * `  A
)  =  A )
65oveq2d 6089 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  x.  (
* `  A )
)  =  ( A  x.  A ) )
72sqvald 11512 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
86, 7eqtr4d 2470 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  x.  (
* `  A )
)  =  ( A ^ 2 ) )
98fveq2d 5724 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  ( A  x.  ( * `  A ) ) )  =  ( sqr `  ( A ^ 2 ) ) )
10 sqrsq 12067 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  ( A ^ 2 ) )  =  A )
114, 9, 103eqtrd 2471 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    x. cmul 8987    <_ cle 9113   2c2 10041   ^cexp 11374   *ccj 11893   sqrcsqr 12030   abscabs 12031
This theorem is referenced by:  abs1  12094  absnid  12095  leabs  12096  absor  12097  sqabs  12104  max0add  12107  absidm  12119  abssubge0  12123  fzomaxdiflem  12138  absidi  12173  absidd  12217  o1fsum  12584  geo2lim  12644  geoihalfsum  12651  ege2le3  12684  eirrlem  12795  rpnnen2lem3  12808  rpnnen2lem9  12814  iscmet3lem3  19235  minveclem2  19319  mbfi1fseqlem6  19604  dvfsumrlim  19907  aaliou3lem3  20253  pserulm  20330  pige3  20417  efif1olem4  20439  cxpcn3lem  20623  log2cnv  20776  log2tlbnd  20777  cxplim  20802  cxploglim2  20809  divsqrsumo1  20814  fsumharmonic  20842  logfacrlim  21000  logexprlim  21001  dchrmusum2  21180  dchrvmasumlem3  21185  dchrisum0lem1  21202  dchrisum0lem2a  21203  dchrisum0lem2  21204  mudivsum  21216  mulogsumlem  21217  log2sumbnd  21230  selberglem2  21232  selberg3lem1  21243  pntpbnd2  21273  pntibndlem2  21277  pntlemn  21286  pntlemj  21289  pntlemo  21293  nvsge0  22144  nmoub2i  22267  minvecolem2  22369  zetacvg  24791  subfacval3  24867  oddcomabszz  26988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033
  Copyright terms: Public domain W3C validator