MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmod0 Unicode version

Theorem absmod0 11835
Description:  A is divisible by  B iff its absolute value is. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
absmod0  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  mod  B )  =  0  <->  (
( abs `  A
)  mod  B )  =  0 ) )

Proof of Theorem absmod0
StepHypRef Expression
1 oveq1 5907 . . . . 5  |-  ( A  =  ( abs `  A
)  ->  ( A  mod  B )  =  ( ( abs `  A
)  mod  B )
)
21eqcoms 2319 . . . 4  |-  ( ( abs `  A )  =  A  ->  ( A  mod  B )  =  ( ( abs `  A
)  mod  B )
)
32eqeq1d 2324 . . 3  |-  ( ( abs `  A )  =  A  ->  (
( A  mod  B
)  =  0  <->  (
( abs `  A
)  mod  B )  =  0 ) )
43a1i 10 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( abs `  A
)  =  A  -> 
( ( A  mod  B )  =  0  <->  (
( abs `  A
)  mod  B )  =  0 ) ) )
5 negmod0 11026 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  mod  B )  =  0  <->  ( -u A  mod  B )  =  0 ) )
6 oveq1 5907 . . . . 5  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  mod  B )  =  ( -u A  mod  B ) )
76eqeq1d 2324 . . . 4  |-  ( ( abs `  A )  =  -u A  ->  (
( ( abs `  A
)  mod  B )  =  0  <->  ( -u A  mod  B )  =  0 ) )
87bibi2d 309 . . 3  |-  ( ( abs `  A )  =  -u A  ->  (
( ( A  mod  B )  =  0  <->  (
( abs `  A
)  mod  B )  =  0 )  <->  ( ( A  mod  B )  =  0  <->  ( -u A  mod  B )  =  0 ) ) )
95, 8syl5ibrcom 213 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( abs `  A
)  =  -u A  ->  ( ( A  mod  B )  =  0  <->  (
( abs `  A
)  mod  B )  =  0 ) ) )
10 absor 11832 . . 3  |-  ( A  e.  RR  ->  (
( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
1110adantr 451 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
124, 9, 11mpjaod 370 1  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  mod  B )  =  0  <->  (
( abs `  A
)  mod  B )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1633    e. wcel 1701   ` cfv 5292  (class class class)co 5900   RRcr 8781   0cc0 8782   -ucneg 9083   RR+crp 10401    mod cmo 11020   abscabs 11766
This theorem is referenced by:  absmod0OLD  25600  pellexlem6  26067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-rp 10402  df-fl 10972  df-mod 11021  df-seq 11094  df-exp 11152  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768
  Copyright terms: Public domain W3C validator