MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmulgcd Unicode version

Theorem absmulgcd 12817
Description: Distribute absolute value of multiplication over gcd. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 12787 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
2 nn0re 10063 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  ( M  gcd  N )  e.  RR )
3 nn0ge0 10080 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  0  <_ 
( M  gcd  N
) )
42, 3absidd 11995 . . . . 5  |-  ( ( M  gcd  N )  e.  NN0  ->  ( abs `  ( M  gcd  N
) )  =  ( M  gcd  N ) )
51, 4syl 15 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  gcd  N ) )  =  ( M  gcd  N ) )
65oveq2d 5958 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
763adant1 973 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
8 zcn 10118 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  CC )
91nn0cnd 10109 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
10 absmul 11869 . . . 4  |-  ( ( K  e.  CC  /\  ( M  gcd  N )  e.  CC )  -> 
( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
118, 9, 10syl2an 463 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
12113impb 1147 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) ) )
13 zcn 10118 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 10118 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 absmul 11869 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( abs `  ( K  x.  M )
)  =  ( ( abs `  K )  x.  ( abs `  M
) ) )
16 absmul 11869 . . . . . . 7  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( K  x.  N )
)  =  ( ( abs `  K )  x.  ( abs `  N
) ) )
1715, 16oveqan12d 5961 . . . . . 6  |-  ( ( ( K  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  N  e.  CC ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
18173impdi 1237 . . . . 5  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
198, 13, 14, 18syl3an 1224 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
20 zmulcl 10155 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21 zmulcl 10155 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
22 gcdabs 12803 . . . . . 6  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( abs `  ( K  x.  M
) )  gcd  ( abs `  ( K  x.  N ) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N
) ) )
2320, 21, 22syl2an 463 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
24233impdi 1237 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
25 nn0abscl 11887 . . . . 5  |-  ( K  e.  ZZ  ->  ( abs `  K )  e. 
NN0 )
26 nn0abscl 11887 . . . . . 6  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
2726nn0zd 10204 . . . . 5  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
28 nn0abscl 11887 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
2928nn0zd 10204 . . . . 5  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
30 mulgcd 12816 . . . . 5  |-  ( ( ( abs `  K
)  e.  NN0  /\  ( abs `  M )  e.  ZZ  /\  ( abs `  N )  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
3125, 27, 29, 30syl3an 1224 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
3219, 24, 313eqtr3d 2398 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) ) )
33 gcdabs 12803 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
34333adant1 973 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
3534oveq2d 5958 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
3632, 35eqtrd 2390 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
377, 12, 363eqtr4rd 2401 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   ` cfv 5334  (class class class)co 5942   CCcc 8822    x. cmul 8829   NN0cn0 10054   ZZcz 10113   abscabs 11809    gcd cgcd 12776
This theorem is referenced by:  coprmdvds  12872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-sup 7281  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-rp 10444  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-dvds 12623  df-gcd 12777
  Copyright terms: Public domain W3C validator