MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneu Structured version   Unicode version

Theorem absneu 3902
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )

Proof of Theorem absneu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sneq 3849 . . . . 5  |-  ( y  =  A  ->  { y }  =  { A } )
21eqeq2d 2453 . . . 4  |-  ( y  =  A  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  { A } ) )
32spcegv 3043 . . 3  |-  ( A  e.  V  ->  ( { x  |  ph }  =  { A }  ->  E. y { x  | 
ph }  =  {
y } ) )
43imp 420 . 2  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E. y { x  |  ph }  =  {
y } )
5 euabsn2 3899 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
64, 5sylibr 205 1  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1727   E!weu 2287   {cab 2428   {csn 3838
This theorem is referenced by:  rabsneu  3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-v 2964  df-sn 3844
  Copyright terms: Public domain W3C validator