MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneu Unicode version

Theorem absneu 3777
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )

Proof of Theorem absneu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sneq 3727 . . . . 5  |-  ( y  =  A  ->  { y }  =  { A } )
21eqeq2d 2369 . . . 4  |-  ( y  =  A  ->  ( { x  |  ph }  =  { y }  <->  { x  |  ph }  =  { A } ) )
32spcegv 2945 . . 3  |-  ( A  e.  V  ->  ( { x  |  ph }  =  { A }  ->  E. y { x  | 
ph }  =  {
y } ) )
43imp 418 . 2  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E. y { x  |  ph }  =  {
y } )
5 euabsn2 3774 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
64, 5sylibr 203 1  |-  ( ( A  e.  V  /\  { x  |  ph }  =  { A } )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710   E!weu 2209   {cab 2344   {csn 3716
This theorem is referenced by:  rabsneu  3778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-v 2866  df-sn 3722
  Copyright terms: Public domain W3C validator