Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abss Structured version   Unicode version

Theorem abss 3404
 Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem abss
StepHypRef Expression
1 abid2 2552 . . 3
21sseq2i 3365 . 2
3 ss2ab 3403 . 2
42, 3bitr3i 243 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wcel 1725  cab 2421   wss 3312 This theorem is referenced by:  abssdv  3409  rabss  3412  uniiunlem  3423  iunss  4124  moabex  4414  reliun  4987  axdc2lem  8320  mptelee  25826 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator