MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Unicode version

Theorem abssexg 4352
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 4351 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 df-pw 3769 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
32eleq1i 2475 . . 3  |-  ( ~P A  e.  _V  <->  { x  |  x  C_  A }  e.  _V )
4 simpl 444 . . . . 5  |-  ( ( x  C_  A  /\  ph )  ->  x  C_  A
)
54ss2abi 3383 . . . 4  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  |  x  C_  A }
6 ssexg 4317 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  ph ) }  C_  { x  |  x  C_  A }  /\  { x  |  x 
C_  A }  e.  _V )  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
75, 6mpan 652 . . 3  |-  ( { x  |  x  C_  A }  e.  _V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
83, 7sylbi 188 . 2  |-  ( ~P A  e.  _V  ->  { x  |  ( x 
C_  A  /\  ph ) }  e.  _V )
91, 8syl 16 1  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721   {cab 2398   _Vcvv 2924    C_ wss 3288   ~Pcpw 3767
This theorem is referenced by:  pmex  6990  tgval  16983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-pow 4345
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-v 2926  df-in 3295  df-ss 3302  df-pw 3769
  Copyright terms: Public domain W3C validator