MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Unicode version

Theorem abssexg 4297
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 4296 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 df-pw 3716 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
32eleq1i 2429 . . 3  |-  ( ~P A  e.  _V  <->  { x  |  x  C_  A }  e.  _V )
4 simpl 443 . . . . 5  |-  ( ( x  C_  A  /\  ph )  ->  x  C_  A
)
54ss2abi 3331 . . . 4  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  |  x  C_  A }
6 ssexg 4262 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  ph ) }  C_  { x  |  x  C_  A }  /\  { x  |  x 
C_  A }  e.  _V )  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
75, 6mpan 651 . . 3  |-  ( { x  |  x  C_  A }  e.  _V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
83, 7sylbi 187 . 2  |-  ( ~P A  e.  _V  ->  { x  |  ( x 
C_  A  /\  ph ) }  e.  _V )
91, 8syl 15 1  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1715   {cab 2352   _Vcvv 2873    C_ wss 3238   ~Pcpw 3714
This theorem is referenced by:  pmex  6920  tgval  16910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-pow 4290
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-v 2875  df-in 3245  df-ss 3252  df-pw 3716
  Copyright terms: Public domain W3C validator