MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvn0b Unicode version

Theorem abvn0b 16321
Description: Another characterization of domains, hinted at in abvtriv 15888: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypothesis
Ref Expression
abvn0b.b  |-  A  =  (AbsVal `  R )
Assertion
Ref Expression
abvn0b  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A  =/=  (/) ) )

Proof of Theorem abvn0b
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnnzr 16314 . . 3  |-  ( R  e. Domn  ->  R  e. NzRing )
2 abvn0b.b . . . . 5  |-  A  =  (AbsVal `  R )
3 eqid 2408 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
4 eqid 2408 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
5 eqid 2408 . . . . 5  |-  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )  =  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )
6 eqid 2408 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
7 domnrng 16315 . . . . 5  |-  ( R  e. Domn  ->  R  e.  Ring )
83, 6, 4domnmuln0 16317 . . . . 5  |-  ( ( R  e. Domn  /\  (
y  e.  ( Base `  R )  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  ( Base `  R )  /\  z  =/=  ( 0g `  R
) ) )  -> 
( y ( .r
`  R ) z )  =/=  ( 0g
`  R ) )
92, 3, 4, 5, 6, 7, 8abvtrivd 15887 . . . 4  |-  ( R  e. Domn  ->  ( x  e.  ( Base `  R
)  |->  if ( x  =  ( 0g `  R ) ,  0 ,  1 ) )  e.  A )
10 ne0i 3598 . . . 4  |-  ( ( x  e.  ( Base `  R )  |->  if ( x  =  ( 0g
`  R ) ,  0 ,  1 ) )  e.  A  ->  A  =/=  (/) )
119, 10syl 16 . . 3  |-  ( R  e. Domn  ->  A  =/=  (/) )
121, 11jca 519 . 2  |-  ( R  e. Domn  ->  ( R  e. NzRing  /\  A  =/=  (/) ) )
13 n0 3601 . . . . 5  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
14 neanior 2656 . . . . . . . . 9  |-  ( ( y  =/=  ( 0g
`  R )  /\  z  =/=  ( 0g `  R ) )  <->  -.  (
y  =  ( 0g
`  R )  \/  z  =  ( 0g
`  R ) ) )
15 an4 798 . . . . . . . . . . 11  |-  ( ( ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) )  /\  ( y  =/=  ( 0g `  R
)  /\  z  =/=  ( 0g `  R ) ) )  <->  ( (
y  e.  ( Base `  R )  /\  y  =/=  ( 0g `  R
) )  /\  (
z  e.  ( Base `  R )  /\  z  =/=  ( 0g `  R
) ) ) )
162, 3, 4, 6abvdom 15885 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  y  =/=  ( 0g `  R ) )  /\  ( z  e.  ( Base `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) )
17163expib 1156 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( ( y  e.  ( Base `  R
)  /\  y  =/=  ( 0g `  R ) )  /\  ( z  e.  ( Base `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) ) )
1815, 17syl5bi 209 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( ( y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  /\  ( y  =/=  ( 0g `  R
)  /\  z  =/=  ( 0g `  R ) ) )  ->  (
y ( .r `  R ) z )  =/=  ( 0g `  R ) ) )
1918expdimp 427 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
y  =/=  ( 0g
`  R )  /\  z  =/=  ( 0g `  R ) )  -> 
( y ( .r
`  R ) z )  =/=  ( 0g
`  R ) ) )
2014, 19syl5bir 210 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( -.  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) )  ->  ( y
( .r `  R
) z )  =/=  ( 0g `  R
) ) )
2120necon4bd 2633 . . . . . . 7  |-  ( ( x  e.  A  /\  ( y  e.  (
Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
y ( .r `  R ) z )  =  ( 0g `  R )  ->  (
y  =  ( 0g
`  R )  \/  z  =  ( 0g
`  R ) ) ) )
2221ralrimivva 2762 . . . . . 6  |-  ( x  e.  A  ->  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2322exlimiv 1641 . . . . 5  |-  ( E. x  x  e.  A  ->  A. y  e.  (
Base `  R ) A. z  e.  ( Base `  R ) ( ( y ( .r
`  R ) z )  =  ( 0g
`  R )  -> 
( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2413, 23sylbi 188 . . . 4  |-  ( A  =/=  (/)  ->  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) )
2524anim2i 553 . . 3  |-  ( ( R  e. NzRing  /\  A  =/=  (/) )  ->  ( R  e. NzRing  /\  A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) ) )
263, 6, 4isdomn 16313 . . 3  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( y ( .r `  R
) z )  =  ( 0g `  R
)  ->  ( y  =  ( 0g `  R )  \/  z  =  ( 0g `  R ) ) ) ) )
2725, 26sylibr 204 . 2  |-  ( ( R  e. NzRing  /\  A  =/=  (/) )  ->  R  e. Domn
)
2812, 27impbii 181 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   (/)c0 3592   ifcif 3703    e. cmpt 4230   ` cfv 5417  (class class class)co 6044   0cc0 8950   1c1 8951   Basecbs 13428   .rcmulr 13489   0gc0g 13682  AbsValcabv 15863  NzRingcnzr 16287  Domncdomn 16299
This theorem is referenced by:  nrgdomn  18664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-ico 10882  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-plusg 13501  df-0g 13686  df-mnd 14649  df-grp 14771  df-minusg 14772  df-mgp 15608  df-rng 15622  df-abv 15864  df-nzr 16288  df-domn 16303
  Copyright terms: Public domain W3C validator