MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvne0 Unicode version

Theorem abvne0 15874
Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a  |-  A  =  (AbsVal `  R )
abvf.b  |-  B  =  ( Base `  R
)
abveq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
abvne0  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )

Proof of Theorem abvne0
StepHypRef Expression
1 abvf.a . . . 4  |-  A  =  (AbsVal `  R )
2 abvf.b . . . 4  |-  B  =  ( Base `  R
)
3 abveq0.z . . . 4  |-  .0.  =  ( 0g `  R )
41, 2, 3abveq0 15873 . . 3  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  X )  =  0  <-> 
X  =  .0.  )
)
54necon3bid 2606 . 2  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  X )  =/=  0  <->  X  =/=  .0.  ) )
65biimp3ar 1284 1  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   ` cfv 5417   0cc0 8950   Basecbs 13428   0gc0g 13682  AbsValcabv 15863
This theorem is referenced by:  abvgt0  15875  abv1z  15879  abvrec  15883  abvdiv  15884  abvdom  15885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-map 6983  df-abv 15864
  Copyright terms: Public domain W3C validator