Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvor0 Structured version   Unicode version

Theorem abvor0 3637
 Description: The class builder of a wff not containing the abstraction variable is either the universal class or the empty set. (Contributed by Mario Carneiro, 29-Aug-2013.)
Assertion
Ref Expression
abvor0
Distinct variable group:   ,

Proof of Theorem abvor0
StepHypRef Expression
1 id 20 . . . . . 6
2 vex 2951 . . . . . . 7
32a1i 11 . . . . . 6
41, 32thd 232 . . . . 5
54abbi1dv 2551 . . . 4
65con3i 129 . . 3
7 id 20 . . . . 5
8 noel 3624 . . . . . 6
98a1i 11 . . . . 5
107, 92falsed 341 . . . 4
1110abbi1dv 2551 . . 3
126, 11syl 16 . 2
1312orri 366 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 358   wceq 1652   wcel 1725  cab 2421  cvv 2948  c0 3620 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-dif 3315  df-nul 3621
 Copyright terms: Public domain W3C validator