MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvpropd Unicode version

Theorem abvpropd 15893
Description: If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
abvpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
abvpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
abvpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
abvpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
abvpropd  |-  ( ph  ->  (AbsVal `  K )  =  (AbsVal `  L )
)
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem abvpropd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 abvpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 abvpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
3 abvpropd.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
4 abvpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
51, 2, 3, 4rngpropd 15658 . . . 4  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
61, 2eqtr3d 2446 . . . . . 6  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
76feq2d 5548 . . . . 5  |-  ( ph  ->  ( f : (
Base `  K ) --> ( 0 [,)  +oo ) 
<->  f : ( Base `  L ) --> ( 0 [,)  +oo ) ) )
81, 2, 3grpidpropd 14685 . . . . . . . . . . 11  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
98adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  ( 0g `  K )  =  ( 0g `  L
) )
109eqeq2d 2423 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
x  =  ( 0g
`  K )  <->  x  =  ( 0g `  L ) ) )
1110bibi2d 310 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( f `  x )  =  0  <-> 
x  =  ( 0g
`  K ) )  <-> 
( ( f `  x )  =  0  <-> 
x  =  ( 0g
`  L ) ) ) )
124fveq2d 5699 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( f `  (
x ( .r `  K ) y ) )  =  ( f `
 ( x ( .r `  L ) y ) ) )
1312eqeq1d 2420 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( f `  ( x ( .r
`  K ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  <-> 
( f `  (
x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) ) ) )
143fveq2d 5699 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( f `  (
x ( +g  `  K
) y ) )  =  ( f `  ( x ( +g  `  L ) y ) ) )
1514breq1d 4190 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) )  <->  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) )
1613, 15anbi12d 692 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( f `
 ( x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <-> 
( ( f `  ( x ( .r
`  L ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) )
1716anassrs 630 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( ( f `  ( x ( .r
`  K ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <-> 
( ( f `  ( x ( .r
`  L ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) )
1817ralbidva 2690 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( f `  ( x ( .r
`  K ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <->  A. y  e.  B  ( ( f `  ( x ( .r
`  L ) y ) )  =  ( ( f `  x
)  x.  ( f `
 y ) )  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) )
1911, 18anbi12d 692 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( ( f `
 x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  B  ( ( f `
 ( x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) )  <->  ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) )
2019ralbidva 2690 . . . . . 6  |-  ( ph  ->  ( A. x  e.  B  ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) )  <->  A. x  e.  B  ( (
( f `  x
)  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  B  ( ( f `  (
x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x ( +g  `  L
) y ) )  <_  ( ( f `
 x )  +  ( f `  y
) ) ) ) ) )
211raleqdv 2878 . . . . . . . 8  |-  ( ph  ->  ( A. y  e.  B  ( ( f `
 ( x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <->  A. y  e.  ( Base `  K ) ( ( f `  (
x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x ( +g  `  K
) y ) )  <_  ( ( f `
 x )  +  ( f `  y
) ) ) ) )
2221anbi2d 685 . . . . . . 7  |-  ( ph  ->  ( ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) )  <->  ( (
( f `  x
)  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K ) ( ( f `  ( x ( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) )
231, 22raleqbidv 2884 . . . . . 6  |-  ( ph  ->  ( A. x  e.  B  ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) )  <->  A. x  e.  ( Base `  K
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K
) ( ( f `
 ( x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) ) )
242raleqdv 2878 . . . . . . . 8  |-  ( ph  ->  ( A. y  e.  B  ( ( f `
 ( x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) )  <->  A. y  e.  ( Base `  L ) ( ( f `  (
x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  ( f `  y ) )  /\  ( f `  (
x ( +g  `  L
) y ) )  <_  ( ( f `
 x )  +  ( f `  y
) ) ) ) )
2524anbi2d 685 . . . . . . 7  |-  ( ph  ->  ( ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) )  <->  ( (
( f `  x
)  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L ) ( ( f `  ( x ( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) )
262, 25raleqbidv 2884 . . . . . 6  |-  ( ph  ->  ( A. x  e.  B  ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  B  ( (
f `  ( x
( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) )  <->  A. x  e.  ( Base `  L
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L
) ( ( f `
 ( x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) ) )
2720, 23, 263bitr3d 275 . . . . 5  |-  ( ph  ->  ( A. x  e.  ( Base `  K
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K
) ( ( f `
 ( x ( .r `  K ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  K ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) )  <->  A. x  e.  (
Base `  L )
( ( ( f `
 x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L
) ( ( f `
 ( x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) ) )
287, 27anbi12d 692 . . . 4  |-  ( ph  ->  ( ( f : ( Base `  K
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  K ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K ) ( ( f `  ( x ( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) )  <-> 
( f : (
Base `  L ) --> ( 0 [,)  +oo )  /\  A. x  e.  ( Base `  L
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L
) ( ( f `
 ( x ( .r `  L ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  L ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) ) ) )
295, 28anbi12d 692 . . 3  |-  ( ph  ->  ( ( K  e. 
Ring  /\  ( f : ( Base `  K
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  K ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K ) ( ( f `  ( x ( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) )  <->  ( L  e. 
Ring  /\  ( f : ( Base `  L
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  L ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L ) ( ( f `  ( x ( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) ) ) )
30 eqid 2412 . . . . 5  |-  (AbsVal `  K )  =  (AbsVal `  K )
3130abvrcl 15872 . . . 4  |-  ( f  e.  (AbsVal `  K
)  ->  K  e.  Ring )
32 eqid 2412 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
33 eqid 2412 . . . . 5  |-  ( +g  `  K )  =  ( +g  `  K )
34 eqid 2412 . . . . 5  |-  ( .r
`  K )  =  ( .r `  K
)
35 eqid 2412 . . . . 5  |-  ( 0g
`  K )  =  ( 0g `  K
)
3630, 32, 33, 34, 35isabv 15870 . . . 4  |-  ( K  e.  Ring  ->  ( f  e.  (AbsVal `  K
)  <->  ( f : ( Base `  K
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  K ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K ) ( ( f `  ( x ( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) ) )
3731, 36biadan2 624 . . 3  |-  ( f  e.  (AbsVal `  K
)  <->  ( K  e. 
Ring  /\  ( f : ( Base `  K
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  K ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  K ) )  /\  A. y  e.  ( Base `  K ) ( ( f `  ( x ( .r `  K
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  K ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) ) )
38 eqid 2412 . . . . 5  |-  (AbsVal `  L )  =  (AbsVal `  L )
3938abvrcl 15872 . . . 4  |-  ( f  e.  (AbsVal `  L
)  ->  L  e.  Ring )
40 eqid 2412 . . . . 5  |-  ( Base `  L )  =  (
Base `  L )
41 eqid 2412 . . . . 5  |-  ( +g  `  L )  =  ( +g  `  L )
42 eqid 2412 . . . . 5  |-  ( .r
`  L )  =  ( .r `  L
)
43 eqid 2412 . . . . 5  |-  ( 0g
`  L )  =  ( 0g `  L
)
4438, 40, 41, 42, 43isabv 15870 . . . 4  |-  ( L  e.  Ring  ->  ( f  e.  (AbsVal `  L
)  <->  ( f : ( Base `  L
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  L ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L ) ( ( f `  ( x ( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) ) )
4539, 44biadan2 624 . . 3  |-  ( f  e.  (AbsVal `  L
)  <->  ( L  e. 
Ring  /\  ( f : ( Base `  L
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  L ) ( ( ( f `  x
)  =  0  <->  x  =  ( 0g `  L ) )  /\  A. y  e.  ( Base `  L ) ( ( f `  ( x ( .r `  L
) y ) )  =  ( ( f `
 x )  x.  ( f `  y
) )  /\  (
f `  ( x
( +g  `  L ) y ) )  <_ 
( ( f `  x )  +  ( f `  y ) ) ) ) ) ) )
4629, 37, 453bitr4g 280 . 2  |-  ( ph  ->  ( f  e.  (AbsVal `  K )  <->  f  e.  (AbsVal `  L ) ) )
4746eqrdv 2410 1  |-  ( ph  ->  (AbsVal `  K )  =  (AbsVal `  L )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   class class class wbr 4180   -->wf 5417   ` cfv 5421  (class class class)co 6048   0cc0 8954    + caddc 8957    x. cmul 8959    +oocpnf 9081    <_ cle 9085   [,)cico 10882   Basecbs 13432   +g cplusg 13492   .rcmulr 13493   0gc0g 13686   Ringcrg 15623  AbsValcabv 15867
This theorem is referenced by:  tngnrg  18671  abvpropd2  24146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-plusg 13505  df-0g 13690  df-mnd 14653  df-grp 14775  df-mgp 15612  df-rng 15626  df-abv 15868
  Copyright terms: Public domain W3C validator