MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Unicode version

Theorem abvres 15886
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a  |-  A  =  (AbsVal `  R )
abvres.s  |-  S  =  ( Rs  C )
abvres.b  |-  B  =  (AbsVal `  S )
Assertion
Ref Expression
abvres  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )

Proof of Theorem abvres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3  |-  B  =  (AbsVal `  S )
21a1i 11 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  B  =  (AbsVal `  S )
)
3 abvres.s . . . 4  |-  S  =  ( Rs  C )
43subrgbas 15836 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  =  ( Base `  S )
)
54adantl 453 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  =  ( Base `  S
) )
6 eqid 2408 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
73, 6ressplusg 13530 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( +g  `  R )  =  ( +g  `  S ) )
87adantl 453 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( +g  `  R )  =  ( +g  `  S
) )
9 eqid 2408 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
103, 9ressmulr 13541 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1110adantl 453 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( .r `  R )  =  ( .r `  S
) )
12 subrgsubg 15833 . . . 4  |-  ( C  e.  (SubRing `  R
)  ->  C  e.  (SubGrp `  R ) )
1312adantl 453 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  e.  (SubGrp `  R )
)
14 eqid 2408 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
153, 14subg0 14909 . . 3  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  =  ( 0g `  S ) )
1613, 15syl 16 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( 0g `  R )  =  ( 0g `  S
) )
173subrgrng 15830 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  S  e.  Ring )
1817adantl 453 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  S  e.  Ring )
19 abvres.a . . . 4  |-  A  =  (AbsVal `  R )
20 eqid 2408 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2119, 20abvf 15870 . . 3  |-  ( F  e.  A  ->  F : ( Base `  R
) --> RR )
2220subrgss 15828 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  C_  ( Base `  R ) )
23 fssres 5573 . . 3  |-  ( ( F : ( Base `  R ) --> RR  /\  C  C_  ( Base `  R
) )  ->  ( F  |`  C ) : C --> RR )
2421, 22, 23syl2an 464 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C ) : C --> RR )
2514subg0cl 14911 . . . 4  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  C
)
26 fvres 5708 . . . 4  |-  ( ( 0g `  R )  e.  C  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2713, 25, 263syl 19 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2819, 14abv0 15878 . . . 4  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
2928adantr 452 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3027, 29eqtrd 2440 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  0 )
31 simp1l 981 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  F  e.  A )
3222adantl 453 . . . . . 6  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  C_  ( Base `  R
) )
3332sselda 3312 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C )  ->  x  e.  ( Base `  R ) )
34333adant3 977 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  ( Base `  R ) )
35 simp3 959 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  ( 0g `  R ) )
3619, 20, 14abvgt0 15875 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R
) )  ->  0  <  ( F `  x
) )
3731, 34, 35, 36syl3anc 1184 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  x ) )
38 fvres 5708 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
39383ad2ant2 979 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
4037, 39breqtrrd 4202 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( ( F  |`  C ) `  x ) )
41 simp1l 981 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  F  e.  A )
42 simp1r 982 . . . . . 6  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  e.  (SubRing `  R
) )
4342, 22syl 16 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  C_  ( Base `  R
) )
44 simp2l 983 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  C )
4543, 44sseldd 3313 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  ( Base `  R ) )
46 simp3l 985 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  C )
4743, 46sseldd 3313 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4819, 20, 9abvmul 15876 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
4941, 45, 47, 48syl3anc 1184 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
509subrgmcl 15839 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( .r `  R
) y )  e.  C )
5142, 44, 46, 50syl3anc 1184 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  C )
52 fvres 5708 . . . 4  |-  ( ( x ( .r `  R ) y )  e.  C  ->  (
( F  |`  C ) `
 ( x ( .r `  R ) y ) )  =  ( F `  (
x ( .r `  R ) y ) ) )
5351, 52syl 16 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( F `
 ( x ( .r `  R ) y ) ) )
5444, 38syl 16 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
55 fvres 5708 . . . . 5  |-  ( y  e.  C  ->  (
( F  |`  C ) `
 y )  =  ( F `  y
) )
5646, 55syl 16 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  y
)  =  ( F `
 y ) )
5754, 56oveq12d 6062 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  x.  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  x.  ( F `  y )
) )
5849, 53, 573eqtr4d 2450 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( ( ( F  |`  C ) `
 x )  x.  ( ( F  |`  C ) `  y
) ) )
5919, 20, 6abvtri 15877 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
6041, 45, 47, 59syl3anc 1184 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
616subrgacl 15838 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( +g  `  R ) y )  e.  C
)
6242, 44, 46, 61syl3anc 1184 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( +g  `  R ) y )  e.  C )
63 fvres 5708 . . . 4  |-  ( ( x ( +g  `  R
) y )  e.  C  ->  ( ( F  |`  C ) `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  R ) y ) ) )
6462, 63syl 16 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  =  ( F `  ( x ( +g  `  R ) y ) ) )
6554, 56oveq12d 6062 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  +  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
6660, 64, 653brtr4d 4206 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  <_  ( ( ( F  |`  C ) `  x )  +  ( ( F  |`  C ) `
 y ) ) )
672, 5, 8, 11, 16, 18, 24, 30, 40, 58, 66isabvd 15867 1  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571    C_ wss 3284   class class class wbr 4176    |` cres 4843   -->wf 5413   ` cfv 5417  (class class class)co 6044   RRcr 8949   0cc0 8950    + caddc 8953    x. cmul 8955    < clt 9080    <_ cle 9081   Basecbs 13428   ↾s cress 13429   +g cplusg 13488   .rcmulr 13489   0gc0g 13682  SubGrpcsubg 14897   Ringcrg 15619  SubRingcsubrg 15823  AbsValcabv 15863
This theorem is referenced by:  subrgnrg  18666  qabsabv  21280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-ico 10882  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-0g 13686  df-mnd 14649  df-grp 14771  df-minusg 14772  df-subg 14900  df-mgp 15608  df-rng 15622  df-subrg 15825  df-abv 15864
  Copyright terms: Public domain W3C validator