MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac10ct Unicode version

Theorem ac10ct 7661
Description: A proof of the Well ordering theorem weth 8122, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
ac10ct  |-  ( E. y  e.  On  A  ~<_  y  ->  E. x  x  We  A )
Distinct variable group:    x, A, y

Proof of Theorem ac10ct
Dummy variables  f  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . 6  |-  y  e. 
_V
21brdom 6874 . . . . 5  |-  ( A  ~<_  y  <->  E. f  f : A -1-1-> y )
3 f1f 5437 . . . . . . . . . . . 12  |-  ( f : A -1-1-> y  -> 
f : A --> y )
4 frn 5395 . . . . . . . . . . . 12  |-  ( f : A --> y  ->  ran  f  C_  y )
53, 4syl 15 . . . . . . . . . . 11  |-  ( f : A -1-1-> y  ->  ran  f  C_  y )
6 onss 4582 . . . . . . . . . . 11  |-  ( y  e.  On  ->  y  C_  On )
7 sstr2 3186 . . . . . . . . . . 11  |-  ( ran  f  C_  y  ->  ( y  C_  On  ->  ran  f  C_  On )
)
85, 6, 7syl2im 34 . . . . . . . . . 10  |-  ( f : A -1-1-> y  -> 
( y  e.  On  ->  ran  f  C_  On ) )
9 epweon 4575 . . . . . . . . . 10  |-  _E  We  On
10 wess 4380 . . . . . . . . . 10  |-  ( ran  f  C_  On  ->  (  _E  We  On  ->  _E  We  ran  f ) )
118, 9, 10syl6mpi 58 . . . . . . . . 9  |-  ( f : A -1-1-> y  -> 
( y  e.  On  ->  _E  We  ran  f
) )
1211adantl 452 . . . . . . . 8  |-  ( ( A  ~<_  y  /\  f : A -1-1-> y )  -> 
( y  e.  On  ->  _E  We  ran  f
) )
13 f1f1orn 5483 . . . . . . . . . 10  |-  ( f : A -1-1-> y  -> 
f : A -1-1-onto-> ran  f
)
14 eqid 2283 . . . . . . . . . . 11  |-  { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) }  =  { <. w ,  z
>.  |  ( f `  w )  _E  (
f `  z ) }
1514f1owe 5850 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> ran  f  ->  (  _E  We  ran  f  ->  { <. w ,  z
>.  |  ( f `  w )  _E  (
f `  z ) }  We  A )
)
1613, 15syl 15 . . . . . . . . 9  |-  ( f : A -1-1-> y  -> 
(  _E  We  ran  f  ->  { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) }  We  A ) )
17 weinxp 4757 . . . . . . . . . 10  |-  ( {
<. w ,  z >.  |  ( f `  w )  _E  (
f `  z ) }  We  A  <->  ( { <. w ,  z >.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  We  A )
18 reldom 6869 . . . . . . . . . . . . 13  |-  Rel  ~<_
1918brrelexi 4729 . . . . . . . . . . . 12  |-  ( A  ~<_  y  ->  A  e.  _V )
20 xpexg 4800 . . . . . . . . . . . . 13  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
2120anidms 626 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  ( A  X.  A )  e. 
_V )
2219, 21syl 15 . . . . . . . . . . 11  |-  ( A  ~<_  y  ->  ( A  X.  A )  e.  _V )
23 incom 3361 . . . . . . . . . . . 12  |-  ( ( A  X.  A )  i^i  { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) } )  =  ( { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) }  i^i  ( A  X.  A
) )
24 inex1g 4157 . . . . . . . . . . . 12  |-  ( ( A  X.  A )  e.  _V  ->  (
( A  X.  A
)  i^i  { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) } )  e.  _V )
2523, 24syl5eqelr 2368 . . . . . . . . . . 11  |-  ( ( A  X.  A )  e.  _V  ->  ( { <. w ,  z
>.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  e. 
_V )
26 weeq1 4381 . . . . . . . . . . . 12  |-  ( x  =  ( { <. w ,  z >.  |  ( f `  w )  _E  ( f `  z ) }  i^i  ( A  X.  A
) )  ->  (
x  We  A  <->  ( { <. w ,  z >.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  We  A ) )
2726spcegv 2869 . . . . . . . . . . 11  |-  ( ( { <. w ,  z
>.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  e. 
_V  ->  ( ( {
<. w ,  z >.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  We  A  ->  E. x  x  We  A )
)
2822, 25, 273syl 18 . . . . . . . . . 10  |-  ( A  ~<_  y  ->  ( ( { <. w ,  z
>.  |  ( f `  w )  _E  (
f `  z ) }  i^i  ( A  X.  A ) )  We  A  ->  E. x  x  We  A )
)
2917, 28syl5bi 208 . . . . . . . . 9  |-  ( A  ~<_  y  ->  ( { <. w ,  z >.  |  ( f `  w )  _E  (
f `  z ) }  We  A  ->  E. x  x  We  A
) )
3016, 29sylan9r 639 . . . . . . . 8  |-  ( ( A  ~<_  y  /\  f : A -1-1-> y )  -> 
(  _E  We  ran  f  ->  E. x  x  We  A ) )
3112, 30syld 40 . . . . . . 7  |-  ( ( A  ~<_  y  /\  f : A -1-1-> y )  -> 
( y  e.  On  ->  E. x  x  We  A ) )
3231impancom 427 . . . . . 6  |-  ( ( A  ~<_  y  /\  y  e.  On )  ->  (
f : A -1-1-> y  ->  E. x  x  We  A ) )
3332exlimdv 1664 . . . . 5  |-  ( ( A  ~<_  y  /\  y  e.  On )  ->  ( E. f  f : A -1-1-> y  ->  E. x  x  We  A )
)
342, 33syl5bi 208 . . . 4  |-  ( ( A  ~<_  y  /\  y  e.  On )  ->  ( A  ~<_  y  ->  E. x  x  We  A )
)
3534ex 423 . . 3  |-  ( A  ~<_  y  ->  ( y  e.  On  ->  ( A  ~<_  y  ->  E. x  x  We  A ) ) )
3635pm2.43b 46 . 2  |-  ( y  e.  On  ->  ( A  ~<_  y  ->  E. x  x  We  A )
)
3736rexlimiv 2661 1  |-  ( E. y  e.  On  A  ~<_  y  ->  E. x  x  We  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    e. wcel 1684   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   class class class wbr 4023   {copab 4076    _E cep 4303    We wwe 4351   Oncon0 4392    X. cxp 4687   ran crn 4690   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255    ~<_ cdom 6861
This theorem is referenced by:  ondomen  7664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-dom 6865
  Copyright terms: Public domain W3C validator