MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4c Unicode version

Theorem ac4c 8119
Description: Equivalent of Axiom of Choice (class version) (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
ac4c.1  |-  A  e. 
_V
Assertion
Ref Expression
ac4c  |-  E. f A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x )
Distinct variable group:    x, f, A

Proof of Theorem ac4c
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ac4c.1 . 2  |-  A  e. 
_V
2 raleq 2749 . . 3  |-  ( y  =  A  ->  ( A. x  e.  y 
( x  =/=  (/)  ->  (
f `  x )  e.  x )  <->  A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
32exbidv 1616 . 2  |-  ( y  =  A  ->  ( E. f A. x  e.  y  ( x  =/=  (/)  ->  ( f `  x )  e.  x
)  <->  E. f A. x  e.  A  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
4 ac4 8118 . 2  |-  E. f A. x  e.  y 
( x  =/=  (/)  ->  (
f `  x )  e.  x )
51, 3, 4vtocl 2851 1  |-  E. f A. x  e.  A  ( x  =/=  (/)  ->  (
f `  x )  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801   (/)c0 3468   ` cfv 5271
This theorem is referenced by:  axdclem2  8163
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ac 7759
  Copyright terms: Public domain W3C validator