MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5b Structured version   Unicode version

Theorem ac5b 8363
Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.)
Hypothesis
Ref Expression
ac5b.1  |-  A  e. 
_V
Assertion
Ref Expression
ac5b  |-  ( A. x  e.  A  x  =/=  (/)  ->  E. f
( f : A --> U. A  /\  A. x  e.  A  ( f `  x )  e.  x
) )
Distinct variable group:    x, f, A

Proof of Theorem ac5b
StepHypRef Expression
1 ac5b.1 . . . 4  |-  A  e. 
_V
21uniex 4708 . . 3  |-  U. A  e.  _V
3 numth3 8355 . . 3  |-  ( U. A  e.  _V  ->  U. A  e.  dom  card )
42, 3mp1i 12 . 2  |-  ( A. x  e.  A  x  =/=  (/)  ->  U. A  e. 
dom  card )
5 neirr 2608 . . 3  |-  -.  (/)  =/=  (/)
6 neeq1 2611 . . . 4  |-  ( x  =  (/)  ->  ( x  =/=  (/)  <->  (/)  =/=  (/) ) )
76rspccv 3051 . . 3  |-  ( A. x  e.  A  x  =/=  (/)  ->  ( (/)  e.  A  -> 
(/)  =/=  (/) ) )
85, 7mtoi 172 . 2  |-  ( A. x  e.  A  x  =/=  (/)  ->  -.  (/)  e.  A
)
9 ac5num 7922 . 2  |-  ( ( U. A  e.  dom  card  /\  -.  (/)  e.  A )  ->  E. f ( f : A --> U. A  /\  A. x  e.  A  ( f `  x
)  e.  x ) )
104, 8, 9syl2anc 644 1  |-  ( A. x  e.  A  x  =/=  (/)  ->  E. f
( f : A --> U. A  /\  A. x  e.  A  ( f `  x )  e.  x
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360   E.wex 1551    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958   (/)c0 3630   U.cuni 4017   dom cdm 4881   -->wf 5453   ` cfv 5457   cardccrd 7827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-ac2 8348
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-suc 4590  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-riota 6552  df-recs 6636  df-en 7113  df-card 7831  df-ac 8002
  Copyright terms: Public domain W3C validator