MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6num Unicode version

Theorem ac6num 8319
Description: A version of ac6 8320 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
ac6num.1  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6num  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    y, f, B, x    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)    V( x, y, f)

Proof of Theorem ac6num
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4085 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  { y  e.  B  |  ph }
21nfel1 2554 . . . . . . . 8  |-  F/ x U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card
3 ssiun2 4098 . . . . . . . . 9  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  C_  U_ x  e.  A  { y  e.  B  |  ph }
)
4 ssexg 4313 . . . . . . . . . 10  |-  ( ( { y  e.  B  |  ph }  C_  U_ x  e.  A  { y  e.  B  |  ph }  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )  ->  { y  e.  B  |  ph }  e.  _V )
54expcom 425 . . . . . . . . 9  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  -> 
( { y  e.  B  |  ph }  C_ 
U_ x  e.  A  { y  e.  B  |  ph }  ->  { y  e.  B  |  ph }  e.  _V )
)
63, 5syl5 30 . . . . . . . 8  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  -> 
( x  e.  A  ->  { y  e.  B  |  ph }  e.  _V ) )
72, 6ralrimi 2751 . . . . . . 7  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  A. x  e.  A  { y  e.  B  |  ph }  e.  _V )
8 dfiun2g 4087 . . . . . . 7  |-  ( A. x  e.  A  {
y  e.  B  |  ph }  e.  _V  ->  U_ x  e.  A  {
y  e.  B  |  ph }  =  U. {
z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } } )
97, 8syl 16 . . . . . 6  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  =  U. { z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } } )
10 eqid 2408 . . . . . . . 8  |-  ( x  e.  A  |->  { y  e.  B  |  ph } )  =  ( x  e.  A  |->  { y  e.  B  |  ph } )
1110rnmpt 5079 . . . . . . 7  |-  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  =  {
z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } }
1211unieqi 3989 . . . . . 6  |-  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  = 
U. { z  |  E. x  e.  A  z  =  { y  e.  B  |  ph } }
139, 12syl6eqr 2458 . . . . 5  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  =  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) )
14 id 20 . . . . 5  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )
1513, 14eqeltrrd 2483 . . . 4  |-  ( U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  ->  U. ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  e.  dom  card )
16153ad2ant2 979 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  U. ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  e.  dom  card )
17 simp3 959 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  A. x  e.  A  E. y  e.  B  ph )
18 necom 2652 . . . . . . . 8  |-  ( { y  e.  B  |  ph }  =/=  (/)  <->  (/)  =/=  {
y  e.  B  |  ph } )
19 rabn0 3611 . . . . . . . 8  |-  ( { y  e.  B  |  ph }  =/=  (/)  <->  E. y  e.  B  ph )
20 df-ne 2573 . . . . . . . 8  |-  ( (/)  =/=  { y  e.  B  |  ph }  <->  -.  (/)  =  {
y  e.  B  |  ph } )
2118, 19, 203bitr3i 267 . . . . . . 7  |-  ( E. y  e.  B  ph  <->  -.  (/)  =  { y  e.  B  |  ph }
)
2221ralbii 2694 . . . . . 6  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  A. x  e.  A  -.  (/)  =  {
y  e.  B  |  ph } )
23 ralnex 2680 . . . . . 6  |-  ( A. x  e.  A  -.  (/)  =  { y  e.  B  |  ph }  <->  -. 
E. x  e.  A  (/)  =  { y  e.  B  |  ph }
)
2422, 23bitri 241 . . . . 5  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  -.  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } )
2517, 24sylib 189 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  -.  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } )
26 0ex 4303 . . . . 5  |-  (/)  e.  _V
2710elrnmpt 5080 . . . . 5  |-  ( (/)  e.  _V  ->  ( (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  <->  E. x  e.  A  (/)  =  {
y  e.  B  |  ph } ) )
2826, 27ax-mp 8 . . . 4  |-  ( (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  <->  E. x  e.  A  (/)  =  { y  e.  B  |  ph }
)
2925, 28sylnibr 297 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  -.  (/)  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) )
30 ac5num 7877 . . 3  |-  ( ( U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  e.  dom  card  /\  -.  (/)  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) )  ->  E. g ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z ) )
3116, 29, 30syl2anc 643 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. g
( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) --> U.
ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) ( g `  z )  e.  z ) )
32 ffn 5554 . . . . . 6  |-  ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  -> 
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) )
3332anim1i 552 . . . . 5  |-  ( ( g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z ) )
3473ad2ant2 979 . . . . . . 7  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  A. x  e.  A  { y  e.  B  |  ph }  e.  _V )
35 fveq2 5691 . . . . . . . . 9  |-  ( z  =  { y  e.  B  |  ph }  ->  ( g `  z
)  =  ( g `
 { y  e.  B  |  ph }
) )
36 id 20 . . . . . . . . 9  |-  ( z  =  { y  e.  B  |  ph }  ->  z  =  { y  e.  B  |  ph } )
3735, 36eleq12d 2476 . . . . . . . 8  |-  ( z  =  { y  e.  B  |  ph }  ->  ( ( g `  z )  e.  z  <-> 
( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph } ) )
3810, 37ralrnmpt 5841 . . . . . . 7  |-  ( A. x  e.  A  {
y  e.  B  |  ph }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `  z )  e.  z  <->  A. x  e.  A  ( g `  { y  e.  B  |  ph } )  e. 
{ y  e.  B  |  ph } ) )
3934, 38syl 16 . . . . . 6  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z  <->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph } ) )
4039anbi2d 685 . . . . 5  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  <->  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph }
)  /\  A. x  e.  A  ( g `  { y  e.  B  |  ph } )  e. 
{ y  e.  B  |  ph } ) ) )
4133, 40syl5ib 211 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) ) )
423sseld 3311 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( g `  {
y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  ( g `  { y  e.  B  |  ph } )  e. 
U_ x  e.  A  { y  e.  B  |  ph } ) )
4342ralimia 2743 . . . . . . . . . 10  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
4443ad2antll 710 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
45 nfv 1626 . . . . . . . . . 10  |-  F/ z ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }
46 nfcsb1v 3247 . . . . . . . . . . 11  |-  F/_ x [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )
4746, 1nfel 2552 . . . . . . . . . 10  |-  F/ x [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }
48 csbeq1a 3223 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
g `  { y  e.  B  |  ph }
)  =  [_ z  /  x ]_ ( g `
 { y  e.  B  |  ph }
) )
4948eleq1d 2474 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph }  <->  [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } ) )
5045, 47, 49cbvral 2892 . . . . . . . . 9  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }  <->  A. z  e.  A  [_ z  /  x ]_ (
g `  { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }
)
5144, 50sylib 189 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. z  e.  A  [_ z  /  x ]_ ( g `  {
y  e.  B  |  ph } )  e.  U_ x  e.  A  {
y  e.  B  |  ph } )
52 nfcv 2544 . . . . . . . . . 10  |-  F/_ z
( g `  {
y  e.  B  |  ph } )
5352, 46, 48cbvmpt 4263 . . . . . . . . 9  |-  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  =  ( z  e.  A  |->  [_ z  /  x ]_ (
g `  { y  e.  B  |  ph }
) )
5453fmpt 5853 . . . . . . . 8  |-  ( A. z  e.  A  [_ z  /  x ]_ ( g `
 { y  e.  B  |  ph }
)  e.  U_ x  e.  A  { y  e.  B  |  ph }  <->  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph } )
5551, 54sylib 189 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph } )
56 simpl1 960 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A  e.  V )
57 simpl2 961 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )
58 fex2 5566 . . . . . . 7  |-  ( ( ( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> U_ x  e.  A  { y  e.  B  |  ph }  /\  A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card )  ->  (
x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  e. 
_V )
5955, 56, 57, 58syl3anc 1184 . . . . . 6  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) )  e. 
_V )
60 ssrab2 3392 . . . . . . . . . . 11  |-  { y  e.  B  |  ph }  C_  B
6160sseli 3308 . . . . . . . . . 10  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  ( g `  { y  e.  B  |  ph } )  e.  B )
6261ralimi 2745 . . . . . . . . 9  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  B
)
6362ad2antll 710 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  ( g `  {
y  e.  B  |  ph } )  e.  B
)
64 eqid 2408 . . . . . . . . 9  |-  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )
6564fmpt 5853 . . . . . . . 8  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  B  <->  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) : A --> B )
6663, 65sylib 189 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) : A --> B )
67 nfcv 2544 . . . . . . . . . . 11  |-  F/_ y B
6867elrabsf 3163 . . . . . . . . . 10  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  <->  ( ( g `
 { y  e.  B  |  ph }
)  e.  B  /\  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
6968simprbi 451 . . . . . . . . 9  |-  ( ( g `  { y  e.  B  |  ph } )  e.  {
y  e.  B  |  ph }  ->  [. ( g `
 { y  e.  B  |  ph }
)  /  y ]. ph )
7069ralimi 2745 . . . . . . . 8  |-  ( A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph }  ->  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph )
7170ad2antll 710 . . . . . . 7  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph )
7266, 71jca 519 . . . . . 6  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  -> 
( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
73 feq1 5539 . . . . . . . 8  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( f : A --> B  <->  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) : A --> B ) )
74 nfmpt1 4262 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) )
7574nfeq2 2555 . . . . . . . . 9  |-  F/ x  f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )
76 fvex 5705 . . . . . . . . . . 11  |-  ( f `
 x )  e. 
_V
77 ac6num.1 . . . . . . . . . . 11  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
7876, 77sbcie 3159 . . . . . . . . . 10  |-  ( [. ( f `  x
)  /  y ]. ph  <->  ps )
79 fveq1 5690 . . . . . . . . . . . 12  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( f `  x )  =  ( ( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) `  x ) )
80 fvex 5705 . . . . . . . . . . . . 13  |-  ( g `
 { y  e.  B  |  ph }
)  e.  _V
8164fvmpt2 5775 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  ( g `  {
y  e.  B  |  ph } )  e.  _V )  ->  ( ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) ) `  x
)  =  ( g `
 { y  e.  B  |  ph }
) )
8280, 81mpan2 653 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  (
( x  e.  A  |->  ( g `  {
y  e.  B  |  ph } ) ) `  x )  =  ( g `  { y  e.  B  |  ph } ) )
8379, 82sylan9eq 2460 . . . . . . . . . . 11  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  (
f `  x )  =  ( g `  { y  e.  B  |  ph } ) )
84 dfsbcq 3127 . . . . . . . . . . 11  |-  ( ( f `  x )  =  ( g `  { y  e.  B  |  ph } )  -> 
( [. ( f `  x )  /  y ]. ph  <->  [. ( g `  { y  e.  B  |  ph } )  / 
y ]. ph ) )
8583, 84syl 16 . . . . . . . . . 10  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) )
8678, 85syl5bbr 251 . . . . . . . . 9  |-  ( ( f  =  ( x  e.  A  |->  ( g `
 { y  e.  B  |  ph }
) )  /\  x  e.  A )  ->  ( ps 
<-> 
[. ( g `  { y  e.  B  |  ph } )  / 
y ]. ph ) )
8775, 86ralbida 2684 . . . . . . . 8  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  [. ( g `
 { y  e.  B  |  ph }
)  /  y ]. ph ) )
8873, 87anbi12d 692 . . . . . . 7  |-  ( f  =  ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  ->  ( ( f : A --> B  /\  A. x  e.  A  ps ) 
<->  ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. ( g `  {
y  e.  B  |  ph } )  /  y ]. ph ) ) )
8988spcegv 3001 . . . . . 6  |-  ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) )  e. 
_V  ->  ( ( ( x  e.  A  |->  ( g `  { y  e.  B  |  ph } ) ) : A --> B  /\  A. x  e.  A  [. (
g `  { y  e.  B  |  ph }
)  /  y ]. ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9059, 72, 89sylc 58 . . . . 5  |-  ( ( ( A  e.  V  /\  U_ x  e.  A  { y  e.  B  |  ph }  e.  dom  card  /\  A. x  e.  A  E. y  e.  B  ph )  /\  ( g  Fn  ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } ) )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
9190ex 424 . . . 4  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g  Fn  ran  (
x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. x  e.  A  (
g `  { y  e.  B  |  ph }
)  e.  { y  e.  B  |  ph } )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9241, 91syld 42 . . 3  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( (
g : ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  (
x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9392exlimdv 1643 . 2  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  ( E. g ( g : ran  ( x  e.  A  |->  { y  e.  B  |  ph }
) --> U. ran  ( x  e.  A  |->  { y  e.  B  |  ph } )  /\  A. z  e.  ran  ( x  e.  A  |->  { y  e.  B  |  ph } ) ( g `
 z )  e.  z )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) )
9431, 93mpd 15 1  |-  ( ( A  e.  V  /\  U_ x  e.  A  {
y  e.  B  |  ph }  e.  dom  card  /\ 
A. x  e.  A  E. y  e.  B  ph )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2394    =/= wne 2571   A.wral 2670   E.wrex 2671   {crab 2674   _Vcvv 2920   [.wsbc 3125   [_csb 3215    C_ wss 3284   (/)c0 3592   U.cuni 3979   U_ciun 4057    e. cmpt 4230   dom cdm 4841   ran crn 4842    Fn wfn 5412   -->wf 5413   ` cfv 5417   cardccrd 7782
This theorem is referenced by:  ac6  8320  ptcmplem3  18042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6512  df-en 7073  df-card 7786
  Copyright terms: Public domain W3C validator