MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s Structured version   Unicode version

Theorem ac6s 8369
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 7822, we derive this strong version of ac6 8365 that doesn't require  B to be a set. (Contributed by NM, 4-Feb-2004.)
Hypotheses
Ref Expression
ac6s.1  |-  A  e. 
_V
ac6s.2  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6s  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    x, y, B, f    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)

Proof of Theorem ac6s
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ac6s.1 . . 3  |-  A  e. 
_V
21bnd2 7822 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. z ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph ) )
3 vex 2961 . . . . 5  |-  z  e. 
_V
4 ac6s.2 . . . . 5  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
51, 3, 4ac6 8365 . . . 4  |-  ( A. x  e.  A  E. y  e.  z  ph  ->  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )
65anim2i 554 . . 3  |-  ( ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph )  ->  ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) ) )
76eximi 1586 . 2  |-  ( E. z ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph )  ->  E. z ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) ) )
8 fss 5602 . . . . . . 7  |-  ( ( f : A --> z  /\  z  C_  B )  -> 
f : A --> B )
98expcom 426 . . . . . 6  |-  ( z 
C_  B  ->  (
f : A --> z  -> 
f : A --> B ) )
109anim1d 549 . . . . 5  |-  ( z 
C_  B  ->  (
( f : A --> z  /\  A. x  e.  A  ps )  -> 
( f : A --> B  /\  A. x  e.  A  ps ) ) )
1110eximdv 1633 . . . 4  |-  ( z 
C_  B  ->  ( E. f ( f : A --> z  /\  A. x  e.  A  ps )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
1211imp 420 . . 3  |-  ( ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
1312exlimiv 1645 . 2  |-  ( E. z ( z  C_  B  /\  E. f ( f : A --> z  /\  A. x  e.  A  ps ) )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) )
142, 7, 133syl 19 1  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322   -->wf 5453   ` cfv 5457
This theorem is referenced by:  ac6n  8370  ac6s2  8371  ac6sg  8373  ac6sf  8374  nmounbseqiOLD  22284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-reg 7563  ax-inf2 7599  ax-ac2 8348
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-riota 6552  df-recs 6636  df-rdg 6671  df-en 7113  df-r1 7693  df-rank 7694  df-card 7831  df-ac 8002
  Copyright terms: Public domain W3C validator