MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sf Structured version   Unicode version

Theorem ac6sf 8400
Description: Version of ac6 8391 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
ac6sf.1  |-  F/ y ps
ac6sf.2  |-  A  e. 
_V
ac6sf.3  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6sf  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    x, y, B, f    ph, f
Allowed substitution hints:    ph( x, y)    ps( x, y, f)    A( y)

Proof of Theorem ac6sf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvrexsv 2950 . . 3  |-  ( E. y  e.  B  ph  <->  E. z  e.  B  [
z  /  y ]
ph )
21ralbii 2735 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  <->  A. x  e.  A  E. z  e.  B  [ z  /  y ] ph )
3 ac6sf.2 . . 3  |-  A  e. 
_V
4 ac6sf.1 . . . 4  |-  F/ y ps
5 ac6sf.3 . . . 4  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
64, 5sbhypf 3007 . . 3  |-  ( z  =  ( f `  x )  ->  ( [ z  /  y ] ph  <->  ps ) )
73, 6ac6s 8395 . 2  |-  ( A. x  e.  A  E. z  e.  B  [
z  /  y ]
ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
82, 7sylbi 189 1  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551   F/wnf 1554    = wceq 1653   [wsb 1659    e. wcel 1727   A.wral 2711   E.wrex 2712   _Vcvv 2962   -->wf 5479   ` cfv 5483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-reg 7589  ax-inf2 7625  ax-ac2 8374
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-riota 6578  df-recs 6662  df-rdg 6697  df-en 7139  df-r1 7719  df-rank 7720  df-card 7857  df-ac 8028
  Copyright terms: Public domain W3C validator