MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sfi Structured version   Unicode version

Theorem ac6sfi 7353
Description: A version of ac6s 8366 for finite sets. (Contributed by Jeffrey Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
ac6sfi.1  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6sfi  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    y, f, B, x    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)

Proof of Theorem ac6sfi
Dummy variables  u  w  z  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2906 . . . 4  |-  ( u  =  (/)  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  (/)  E. y  e.  B  ph ) )
2 feq2 5579 . . . . . 6  |-  ( u  =  (/)  ->  ( f : u --> B  <->  f : (/) --> B ) )
3 raleq 2906 . . . . . 6  |-  ( u  =  (/)  ->  ( A. x  e.  u  ps  <->  A. x  e.  (/)  ps )
)
42, 3anbi12d 693 . . . . 5  |-  ( u  =  (/)  ->  ( ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  ( f : (/) --> B  /\  A. x  e.  (/)  ps ) ) )
54exbidv 1637 . . . 4  |-  ( u  =  (/)  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : (/) --> B  /\  A. x  e.  (/)  ps )
) )
61, 5imbi12d 313 . . 3  |-  ( u  =  (/)  ->  ( ( A. x  e.  u  E. y  e.  B  ph 
->  E. f ( f : u --> B  /\  A. x  e.  u  ps ) )  <->  ( A. x  e.  (/)  E. y  e.  B  ph  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) ) ) )
7 raleq 2906 . . . 4  |-  ( u  =  w  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  w  E. y  e.  B  ph )
)
8 feq2 5579 . . . . . 6  |-  ( u  =  w  ->  (
f : u --> B  <->  f :
w --> B ) )
9 raleq 2906 . . . . . 6  |-  ( u  =  w  ->  ( A. x  e.  u  ps 
<-> 
A. x  e.  w  ps ) )
108, 9anbi12d 693 . . . . 5  |-  ( u  =  w  ->  (
( f : u --> B  /\  A. x  e.  u  ps )  <->  ( f : w --> B  /\  A. x  e.  w  ps ) ) )
1110exbidv 1637 . . . 4  |-  ( u  =  w  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) ) )
127, 11imbi12d 313 . . 3  |-  ( u  =  w  ->  (
( A. x  e.  u  E. y  e.  B  ph  ->  E. f
( f : u --> B  /\  A. x  e.  u  ps )
)  <->  ( A. x  e.  w  E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
) ) )
13 raleq 2906 . . . 4  |-  ( u  =  ( w  u. 
{ z } )  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph ) )
14 feq2 5579 . . . . . . 7  |-  ( u  =  ( w  u. 
{ z } )  ->  ( f : u --> B  <->  f :
( w  u.  {
z } ) --> B ) )
15 raleq 2906 . . . . . . 7  |-  ( u  =  ( w  u. 
{ z } )  ->  ( A. x  e.  u  ps  <->  A. x  e.  ( w  u.  {
z } ) ps ) )
1614, 15anbi12d 693 . . . . . 6  |-  ( u  =  ( w  u. 
{ z } )  ->  ( ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  ( f : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) ps ) ) )
1716exbidv 1637 . . . . 5  |-  ( u  =  ( w  u. 
{ z } )  ->  ( E. f
( f : u --> B  /\  A. x  e.  u  ps )  <->  E. f ( f : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) ps ) ) )
18 feq1 5578 . . . . . . 7  |-  ( f  =  g  ->  (
f : ( w  u.  { z } ) --> B  <->  g :
( w  u.  {
z } ) --> B ) )
19 fvex 5744 . . . . . . . . . 10  |-  ( f `
 x )  e. 
_V
20 ac6sfi.1 . . . . . . . . . 10  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
2119, 20sbcie 3197 . . . . . . . . 9  |-  ( [. ( f `  x
)  /  y ]. ph  <->  ps )
22 fveq1 5729 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
23 dfsbcq 3165 . . . . . . . . . 10  |-  ( ( f `  x )  =  ( g `  x )  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  x
)  /  y ]. ph ) )
2422, 23syl 16 . . . . . . . . 9  |-  ( f  =  g  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  x
)  /  y ]. ph ) )
2521, 24syl5bbr 252 . . . . . . . 8  |-  ( f  =  g  ->  ( ps 
<-> 
[. ( g `  x )  /  y ]. ph ) )
2625ralbidv 2727 . . . . . . 7  |-  ( f  =  g  ->  ( A. x  e.  (
w  u.  { z } ) ps  <->  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
2718, 26anbi12d 693 . . . . . 6  |-  ( f  =  g  ->  (
( f : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) ps )  <->  ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
2827cbvexv 1986 . . . . 5  |-  ( E. f ( f : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) ps )  <->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
2917, 28syl6bb 254 . . . 4  |-  ( u  =  ( w  u. 
{ z } )  ->  ( E. f
( f : u --> B  /\  A. x  e.  u  ps )  <->  E. g ( g : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
3013, 29imbi12d 313 . . 3  |-  ( u  =  ( w  u. 
{ z } )  ->  ( ( A. x  e.  u  E. y  e.  B  ph  ->  E. f ( f : u --> B  /\  A. x  e.  u  ps ) )  <->  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
31 raleq 2906 . . . 4  |-  ( u  =  A  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  A  E. y  e.  B  ph )
)
32 feq2 5579 . . . . . 6  |-  ( u  =  A  ->  (
f : u --> B  <->  f : A
--> B ) )
33 raleq 2906 . . . . . 6  |-  ( u  =  A  ->  ( A. x  e.  u  ps 
<-> 
A. x  e.  A  ps ) )
3432, 33anbi12d 693 . . . . 5  |-  ( u  =  A  ->  (
( f : u --> B  /\  A. x  e.  u  ps )  <->  ( f : A --> B  /\  A. x  e.  A  ps ) ) )
3534exbidv 1637 . . . 4  |-  ( u  =  A  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
3631, 35imbi12d 313 . . 3  |-  ( u  =  A  ->  (
( A. x  e.  u  E. y  e.  B  ph  ->  E. f
( f : u --> B  /\  A. x  e.  u  ps )
)  <->  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) ) )
37 f0 5629 . . . 4  |-  (/) : (/) --> B
38 0ex 4341 . . . . 5  |-  (/)  e.  _V
39 ral0 3734 . . . . . . 7  |-  A. x  e.  (/)  ps
4039biantru 493 . . . . . 6  |-  ( f : (/) --> B  <->  ( f : (/) --> B  /\  A. x  e.  (/)  ps )
)
41 feq1 5578 . . . . . 6  |-  ( f  =  (/)  ->  ( f : (/) --> B  <->  (/) : (/) --> B ) )
4240, 41syl5bbr 252 . . . . 5  |-  ( f  =  (/)  ->  ( ( f : (/) --> B  /\  A. x  e.  (/)  ps )  <->  (/) :
(/) --> B ) )
4338, 42spcev 3045 . . . 4  |-  ( (/) :
(/) --> B  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) )
4437, 43mp1i 12 . . 3  |-  ( A. x  e.  (/)  E. y  e.  B  ph  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) )
45 ssun1 3512 . . . . . . 7  |-  w  C_  ( w  u.  { z } )
46 ssralv 3409 . . . . . . 7  |-  ( w 
C_  ( w  u. 
{ z } )  ->  ( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  A. x  e.  w  E. y  e.  B  ph ) )
4745, 46ax-mp 8 . . . . . 6  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  A. x  e.  w  E. y  e.  B  ph )
4847imim1i 57 . . . . 5  |-  ( ( A. x  e.  w  E. y  e.  B  ph 
->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
) )
49 ssun2 3513 . . . . . . . . 9  |-  { z }  C_  ( w  u.  { z } )
50 ssralv 3409 . . . . . . . . 9  |-  ( { z }  C_  (
w  u.  { z } )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  A. x  e.  { z } E. y  e.  B  ph )
)
5149, 50ax-mp 8 . . . . . . . 8  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  A. x  e.  {
z } E. y  e.  B  ph )
52 vex 2961 . . . . . . . . . 10  |-  z  e. 
_V
53 ralsns 3846 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. x  e.  { z } E. y  e.  B  ph  <->  [. z  /  x ]. E. y  e.  B  ph ) )
5452, 53ax-mp 8 . . . . . . . . 9  |-  ( A. x  e.  { z } E. y  e.  B  ph  <->  [. z  /  x ]. E. y  e.  B  ph )
55 sbcrexg 3238 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
)
5652, 55ax-mp 8 . . . . . . . . 9  |-  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
5754, 56bitri 242 . . . . . . . 8  |-  ( A. x  e.  { z } E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
5851, 57sylib 190 . . . . . . 7  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. y  e.  B  [. z  /  x ]. ph )
59 nfv 1630 . . . . . . . 8  |-  F/ y  -.  z  e.  w
60 nfv 1630 . . . . . . . . 9  |-  F/ y E. f ( f : w --> B  /\  A. x  e.  w  ps )
61 nfv 1630 . . . . . . . . . . 11  |-  F/ y  g : ( w  u.  { z } ) --> B
62 nfcv 2574 . . . . . . . . . . . 12  |-  F/_ y
( w  u.  {
z } )
63 nfsbc1v 3182 . . . . . . . . . . . 12  |-  F/ y
[. ( g `  x )  /  y ]. ph
6462, 63nfral 2761 . . . . . . . . . . 11  |-  F/ y A. x  e.  ( w  u.  { z } ) [. (
g `  x )  /  y ]. ph
6561, 64nfan 1847 . . . . . . . . . 10  |-  F/ y ( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph )
6665nfex 1866 . . . . . . . . 9  |-  F/ y E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph )
6760, 66nfim 1833 . . . . . . . 8  |-  F/ y ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
68 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  f :
w --> B )
69 vex 2961 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
7052, 69f1osn 5717 . . . . . . . . . . . . . . 15  |-  { <. z ,  y >. } : { z } -1-1-onto-> { y }
71 f1of 5676 . . . . . . . . . . . . . . 15  |-  ( {
<. z ,  y >. } : { z } -1-1-onto-> { y }  ->  { <. z ,  y >. } : { z } --> { y } )
7270, 71mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { <. z ,  y >. } : { z } --> { y } )
73 simpl2 962 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  y  e.  B )
7473snssd 3945 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { y }  C_  B )
75 fss 5601 . . . . . . . . . . . . . 14  |-  ( ( { <. z ,  y
>. } : { z } --> { y }  /\  { y } 
C_  B )  ->  { <. z ,  y
>. } : { z } --> B )
7672, 74, 75syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { <. z ,  y >. } : { z } --> B )
77 simpl1 961 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  -.  z  e.  w )
78 disjsn 3870 . . . . . . . . . . . . . 14  |-  ( ( w  i^i  { z } )  =  (/)  <->  -.  z  e.  w )
7977, 78sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( w  i^i  { z } )  =  (/) )
80 fun2 5610 . . . . . . . . . . . . 13  |-  ( ( ( f : w --> B  /\  { <. z ,  y >. } : { z } --> B )  /\  ( w  i^i 
{ z } )  =  (/) )  ->  (
f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B )
8168, 76, 79, 80syl21anc 1184 . . . . . . . . . . . 12  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( f  u.  { <. z ,  y
>. } ) : ( w  u.  { z } ) --> B )
82 simprr 735 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  w  ps )
83 eleq1a 2507 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  w  ->  (
z  =  x  -> 
z  e.  w ) )
8483necon3bd 2640 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  w  ->  ( -.  z  e.  w  ->  z  =/=  x ) )
8584impcom 421 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  z  e.  w  /\  x  e.  w
)  ->  z  =/=  x )
86 fvunsn 5927 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  x  ->  (
( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x ) )
87 dfsbcq 3165 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x )  -> 
( [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph  <->  [. ( f `
 x )  / 
y ]. ph ) )
8887, 21syl6rbb 255 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x )  -> 
( ps  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
8985, 86, 883syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( -.  z  e.  w  /\  x  e.  w
)  ->  ( ps  <->  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
9089ralbidva 2723 . . . . . . . . . . . . . . 15  |-  ( -.  z  e.  w  -> 
( A. x  e.  w  ps  <->  A. x  e.  w  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
9177, 90syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( A. x  e.  w  ps  <->  A. x  e.  w  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
9282, 91mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  w  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph )
93 simpl3 963 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  [. z  /  x ]. ph )
94 ffun 5595 . . . . . . . . . . . . . . . . 17  |-  ( ( f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B  ->  Fun  ( f  u.  { <. z ,  y >. } ) )
95 ssun2 3513 . . . . . . . . . . . . . . . . . 18  |-  { <. z ,  y >. }  C_  ( f  u.  { <. z ,  y >. } )
9652snid 3843 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
{ z }
9769dmsnop 5346 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. z ,  y >. }  =  { z }
9896, 97eleqtrri 2511 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
dom  { <. z ,  y
>. }
99 funssfv 5748 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  ( f  u. 
{ <. z ,  y
>. } )  /\  { <. z ,  y >. }  C_  ( f  u. 
{ <. z ,  y
>. } )  /\  z  e.  dom  { <. z ,  y >. } )  ->  ( ( f  u.  { <. z ,  y >. } ) `
 z )  =  ( { <. z ,  y >. } `  z ) )
10095, 98, 99mp3an23 1272 . . . . . . . . . . . . . . . . 17  |-  ( Fun  ( f  u.  { <. z ,  y >. } )  ->  (
( f  u.  { <. z ,  y >. } ) `  z
)  =  ( {
<. z ,  y >. } `  z )
)
10181, 94, 1003syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( (
f  u.  { <. z ,  y >. } ) `
 z )  =  ( { <. z ,  y >. } `  z ) )
10252, 69fvsn 5928 . . . . . . . . . . . . . . . 16  |-  ( {
<. z ,  y >. } `  z )  =  y
103101, 102syl6req 2487 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  y  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  z
) )
104 ralsns 3846 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph ) )
10552, 104ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph )
106 elsni 3840 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { z }  ->  x  =  z )
107106fveq2d 5734 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  { z }  ->  ( ( f  u.  { <. z ,  y >. } ) `
 x )  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  z
) )
108107eqeq2d 2449 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { z }  ->  ( y  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  <->  y  =  ( ( f  u.  { <. z ,  y >. } ) `  z
) ) )
109108biimparc 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  /\  x  e.  { z } )  ->  y  =  ( ( f  u.  { <. z ,  y >. } ) `
 x ) )
110 sbceq1a 3173 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 x )  -> 
( ph  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
111109, 110syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  /\  x  e.  { z } )  ->  ( ph 
<-> 
[. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
112111ralbidva 2723 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  -> 
( A. x  e. 
{ z } ph  <->  A. x  e.  { z } [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
113105, 112syl5bbr 252 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  -> 
( [. z  /  x ]. ph  <->  A. x  e.  {
z } [. (
( f  u.  { <. z ,  y >. } ) `  x
)  /  y ]. ph ) )
114103, 113syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( [. z  /  x ]. ph  <->  A. x  e.  { z } [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
11593, 114mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  { z } [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
116 ralun 3531 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  w  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph 
/\  A. x  e.  {
z } [. (
( f  u.  { <. z ,  y >. } ) `  x
)  /  y ]. ph )  ->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
11792, 115, 116syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
118 vex 2961 . . . . . . . . . . . . . 14  |-  f  e. 
_V
119 snex 4407 . . . . . . . . . . . . . 14  |-  { <. z ,  y >. }  e.  _V
120118, 119unex 4709 . . . . . . . . . . . . 13  |-  ( f  u.  { <. z ,  y >. } )  e.  _V
121 feq1 5578 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
g : ( w  u.  { z } ) --> B  <->  ( f  u.  { <. z ,  y
>. } ) : ( w  u.  { z } ) --> B ) )
122 fveq1 5729 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
g `  x )  =  ( ( f  u.  { <. z ,  y >. } ) `
 x ) )
123 dfsbcq 3165 . . . . . . . . . . . . . . . 16  |-  ( ( g `  x )  =  ( ( f  u.  { <. z ,  y >. } ) `
 x )  -> 
( [. ( g `  x )  /  y ]. ph  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
124122, 123syl 16 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  ( [. ( g `  x
)  /  y ]. ph  <->  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
125124ralbidv 2727 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  ( A. x  e.  (
w  u.  { z } ) [. (
g `  x )  /  y ]. ph  <->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
126121, 125anbi12d 693 . . . . . . . . . . . . 13  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph )  <->  ( (
f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) ) )
127120, 126spcev 3045 . . . . . . . . . . . 12  |-  ( ( ( f  u.  { <. z ,  y >. } ) : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph )  ->  E. g ( g : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
12881, 117, 127syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) )
129128ex 425 . . . . . . . . . 10  |-  ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  ->  (
( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
130129exlimdv 1647 . . . . . . . . 9  |-  ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
1311303exp 1153 . . . . . . . 8  |-  ( -.  z  e.  w  -> 
( y  e.  B  ->  ( [. z  /  x ]. ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) ) )
13259, 67, 131rexlimd 2829 . . . . . . 7  |-  ( -.  z  e.  w  -> 
( E. y  e.  B  [. z  /  x ]. ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
13358, 132syl5 31 . . . . . 6  |-  ( -.  z  e.  w  -> 
( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
134133a2d 25 . . . . 5  |-  ( -.  z  e.  w  -> 
( ( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) ) ) )
13548, 134syl5 31 . . . 4  |-  ( -.  z  e.  w  -> 
( ( A. x  e.  w  E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
136135adantl 454 . . 3  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ( A. x  e.  w  E. y  e.  B  ph 
->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) ) ) )
1376, 12, 30, 36, 44, 136findcard2s 7351 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  E. y  e.  B  ph 
->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
138137imp 420 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958   [.wsbc 3163    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816   <.cop 3819   dom cdm 4880   Fun wfun 5450   -->wf 5452   -1-1-onto->wf1o 5455   ` cfv 5456   Fincfn 7111
This theorem is referenced by:  fissuni  7413  fipreima  7414  indexfi  7416  finacn  7933  axcc4dom  8323  ttukeylem6  8396  firest  13662  ablfaclem3  15647  ablfac2  15649  cmpcovf  17456  cmpsub  17465  tgcmp  17466  hauscmplem  17471  ptcnplem  17655  alexsubALTlem3  18082  alexsubALT  18084  tsmsxplem1  18184  ovolicc2lem5  19419  ovolicc2  19420  limciun  19783  cvmliftlem15  24987  comppfsc  26389  istotbnd3  26482  sstotbnd2  26485  sstotbnd  26486  prdsbnd  26504  prdstotbnd  26505  heiborlem1  26522  heibor  26532  kelac1  27140  hbt  27313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-1o 6726  df-er 6907  df-en 7112  df-fin 7115
  Copyright terms: Public domain W3C validator