MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sfi Unicode version

Theorem ac6sfi 7146
Description: A version of ac6s 8156 for finite sets. (Contributed by Jeffrey Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
ac6sfi.1  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ac6sfi  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Distinct variable groups:    x, f, A    y, f, B, x    ph, f    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, f)    A( y)

Proof of Theorem ac6sfi
Dummy variables  u  w  z  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2770 . . . 4  |-  ( u  =  (/)  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  (/)  E. y  e.  B  ph ) )
2 feq2 5413 . . . . . 6  |-  ( u  =  (/)  ->  ( f : u --> B  <->  f : (/) --> B ) )
3 raleq 2770 . . . . . 6  |-  ( u  =  (/)  ->  ( A. x  e.  u  ps  <->  A. x  e.  (/)  ps )
)
42, 3anbi12d 691 . . . . 5  |-  ( u  =  (/)  ->  ( ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  ( f : (/) --> B  /\  A. x  e.  (/)  ps ) ) )
54exbidv 1617 . . . 4  |-  ( u  =  (/)  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : (/) --> B  /\  A. x  e.  (/)  ps )
) )
61, 5imbi12d 311 . . 3  |-  ( u  =  (/)  ->  ( ( A. x  e.  u  E. y  e.  B  ph 
->  E. f ( f : u --> B  /\  A. x  e.  u  ps ) )  <->  ( A. x  e.  (/)  E. y  e.  B  ph  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) ) ) )
7 raleq 2770 . . . 4  |-  ( u  =  w  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  w  E. y  e.  B  ph )
)
8 feq2 5413 . . . . . 6  |-  ( u  =  w  ->  (
f : u --> B  <->  f :
w --> B ) )
9 raleq 2770 . . . . . 6  |-  ( u  =  w  ->  ( A. x  e.  u  ps 
<-> 
A. x  e.  w  ps ) )
108, 9anbi12d 691 . . . . 5  |-  ( u  =  w  ->  (
( f : u --> B  /\  A. x  e.  u  ps )  <->  ( f : w --> B  /\  A. x  e.  w  ps ) ) )
1110exbidv 1617 . . . 4  |-  ( u  =  w  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) ) )
127, 11imbi12d 311 . . 3  |-  ( u  =  w  ->  (
( A. x  e.  u  E. y  e.  B  ph  ->  E. f
( f : u --> B  /\  A. x  e.  u  ps )
)  <->  ( A. x  e.  w  E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
) ) )
13 raleq 2770 . . . 4  |-  ( u  =  ( w  u. 
{ z } )  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph ) )
14 feq2 5413 . . . . . . 7  |-  ( u  =  ( w  u. 
{ z } )  ->  ( f : u --> B  <->  f :
( w  u.  {
z } ) --> B ) )
15 raleq 2770 . . . . . . 7  |-  ( u  =  ( w  u. 
{ z } )  ->  ( A. x  e.  u  ps  <->  A. x  e.  ( w  u.  {
z } ) ps ) )
1614, 15anbi12d 691 . . . . . 6  |-  ( u  =  ( w  u. 
{ z } )  ->  ( ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  ( f : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) ps ) ) )
1716exbidv 1617 . . . . 5  |-  ( u  =  ( w  u. 
{ z } )  ->  ( E. f
( f : u --> B  /\  A. x  e.  u  ps )  <->  E. f ( f : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) ps ) ) )
18 feq1 5412 . . . . . . 7  |-  ( f  =  g  ->  (
f : ( w  u.  { z } ) --> B  <->  g :
( w  u.  {
z } ) --> B ) )
19 fvex 5577 . . . . . . . . . 10  |-  ( f `
 x )  e. 
_V
20 ac6sfi.1 . . . . . . . . . 10  |-  ( y  =  ( f `  x )  ->  ( ph 
<->  ps ) )
2119, 20sbcie 3059 . . . . . . . . 9  |-  ( [. ( f `  x
)  /  y ]. ph  <->  ps )
22 fveq1 5562 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
23 dfsbcq 3027 . . . . . . . . . 10  |-  ( ( f `  x )  =  ( g `  x )  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  x
)  /  y ]. ph ) )
2422, 23syl 15 . . . . . . . . 9  |-  ( f  =  g  ->  ( [. ( f `  x
)  /  y ]. ph  <->  [. ( g `  x
)  /  y ]. ph ) )
2521, 24syl5bbr 250 . . . . . . . 8  |-  ( f  =  g  ->  ( ps 
<-> 
[. ( g `  x )  /  y ]. ph ) )
2625ralbidv 2597 . . . . . . 7  |-  ( f  =  g  ->  ( A. x  e.  (
w  u.  { z } ) ps  <->  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
2718, 26anbi12d 691 . . . . . 6  |-  ( f  =  g  ->  (
( f : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) ps )  <->  ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
2827cbvexv 1975 . . . . 5  |-  ( E. f ( f : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) ps )  <->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
2917, 28syl6bb 252 . . . 4  |-  ( u  =  ( w  u. 
{ z } )  ->  ( E. f
( f : u --> B  /\  A. x  e.  u  ps )  <->  E. g ( g : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
3013, 29imbi12d 311 . . 3  |-  ( u  =  ( w  u. 
{ z } )  ->  ( ( A. x  e.  u  E. y  e.  B  ph  ->  E. f ( f : u --> B  /\  A. x  e.  u  ps ) )  <->  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
31 raleq 2770 . . . 4  |-  ( u  =  A  ->  ( A. x  e.  u  E. y  e.  B  ph  <->  A. x  e.  A  E. y  e.  B  ph )
)
32 feq2 5413 . . . . . 6  |-  ( u  =  A  ->  (
f : u --> B  <->  f : A
--> B ) )
33 raleq 2770 . . . . . 6  |-  ( u  =  A  ->  ( A. x  e.  u  ps 
<-> 
A. x  e.  A  ps ) )
3432, 33anbi12d 691 . . . . 5  |-  ( u  =  A  ->  (
( f : u --> B  /\  A. x  e.  u  ps )  <->  ( f : A --> B  /\  A. x  e.  A  ps ) ) )
3534exbidv 1617 . . . 4  |-  ( u  =  A  ->  ( E. f ( f : u --> B  /\  A. x  e.  u  ps ) 
<->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
3631, 35imbi12d 311 . . 3  |-  ( u  =  A  ->  (
( A. x  e.  u  E. y  e.  B  ph  ->  E. f
( f : u --> B  /\  A. x  e.  u  ps )
)  <->  ( A. x  e.  A  E. y  e.  B  ph  ->  E. f
( f : A --> B  /\  A. x  e.  A  ps ) ) ) )
37 f0 5463 . . . 4  |-  (/) : (/) --> B
38 0ex 4187 . . . . 5  |-  (/)  e.  _V
39 ral0 3592 . . . . . . 7  |-  A. x  e.  (/)  ps
4039biantru 491 . . . . . 6  |-  ( f : (/) --> B  <->  ( f : (/) --> B  /\  A. x  e.  (/)  ps )
)
41 feq1 5412 . . . . . 6  |-  ( f  =  (/)  ->  ( f : (/) --> B  <->  (/) : (/) --> B ) )
4240, 41syl5bbr 250 . . . . 5  |-  ( f  =  (/)  ->  ( ( f : (/) --> B  /\  A. x  e.  (/)  ps )  <->  (/) :
(/) --> B ) )
4338, 42spcev 2909 . . . 4  |-  ( (/) :
(/) --> B  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) )
4437, 43mp1i 11 . . 3  |-  ( A. x  e.  (/)  E. y  e.  B  ph  ->  E. f
( f : (/) --> B  /\  A. x  e.  (/)  ps ) )
45 ssun1 3372 . . . . . . 7  |-  w  C_  ( w  u.  { z } )
46 ssralv 3271 . . . . . . 7  |-  ( w 
C_  ( w  u. 
{ z } )  ->  ( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  A. x  e.  w  E. y  e.  B  ph ) )
4745, 46ax-mp 8 . . . . . 6  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  A. x  e.  w  E. y  e.  B  ph )
4847imim1i 54 . . . . 5  |-  ( ( A. x  e.  w  E. y  e.  B  ph 
->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
) )
49 ssun2 3373 . . . . . . . . 9  |-  { z }  C_  ( w  u.  { z } )
50 ssralv 3271 . . . . . . . . 9  |-  ( { z }  C_  (
w  u.  { z } )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  A. x  e.  { z } E. y  e.  B  ph )
)
5149, 50ax-mp 8 . . . . . . . 8  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  A. x  e.  {
z } E. y  e.  B  ph )
52 vex 2825 . . . . . . . . . 10  |-  z  e. 
_V
53 ralsns 3704 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. x  e.  { z } E. y  e.  B  ph  <->  [. z  /  x ]. E. y  e.  B  ph ) )
5452, 53ax-mp 8 . . . . . . . . 9  |-  ( A. x  e.  { z } E. y  e.  B  ph  <->  [. z  /  x ]. E. y  e.  B  ph )
55 sbcrexg 3100 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
)
5652, 55ax-mp 8 . . . . . . . . 9  |-  ( [. z  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
5754, 56bitri 240 . . . . . . . 8  |-  ( A. x  e.  { z } E. y  e.  B  ph  <->  E. y  e.  B  [. z  /  x ]. ph )
5851, 57sylib 188 . . . . . . 7  |-  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. y  e.  B  [. z  /  x ]. ph )
59 nfv 1610 . . . . . . . 8  |-  F/ y  -.  z  e.  w
60 nfv 1610 . . . . . . . . 9  |-  F/ y E. f ( f : w --> B  /\  A. x  e.  w  ps )
61 nfv 1610 . . . . . . . . . . 11  |-  F/ y  g : ( w  u.  { z } ) --> B
62 nfcv 2452 . . . . . . . . . . . 12  |-  F/_ y
( w  u.  {
z } )
63 nfsbc1v 3044 . . . . . . . . . . . 12  |-  F/ y
[. ( g `  x )  /  y ]. ph
6462, 63nfral 2630 . . . . . . . . . . 11  |-  F/ y A. x  e.  ( w  u.  { z } ) [. (
g `  x )  /  y ]. ph
6561, 64nfan 1800 . . . . . . . . . 10  |-  F/ y ( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph )
6665nfex 1795 . . . . . . . . 9  |-  F/ y E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph )
6760, 66nfim 1792 . . . . . . . 8  |-  F/ y ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
68 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  f :
w --> B )
69 vex 2825 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
7052, 69f1osn 5551 . . . . . . . . . . . . . . 15  |-  { <. z ,  y >. } : { z } -1-1-onto-> { y }
71 f1of 5510 . . . . . . . . . . . . . . 15  |-  ( {
<. z ,  y >. } : { z } -1-1-onto-> { y }  ->  { <. z ,  y >. } : { z } --> { y } )
7270, 71mp1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { <. z ,  y >. } : { z } --> { y } )
73 simpl2 959 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  y  e.  B )
7473snssd 3797 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { y }  C_  B )
75 fss 5435 . . . . . . . . . . . . . 14  |-  ( ( { <. z ,  y
>. } : { z } --> { y }  /\  { y } 
C_  B )  ->  { <. z ,  y
>. } : { z } --> B )
7672, 74, 75syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  { <. z ,  y >. } : { z } --> B )
77 simpl1 958 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  -.  z  e.  w )
78 disjsn 3727 . . . . . . . . . . . . . 14  |-  ( ( w  i^i  { z } )  =  (/)  <->  -.  z  e.  w )
7977, 78sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( w  i^i  { z } )  =  (/) )
80 fun2 5444 . . . . . . . . . . . . 13  |-  ( ( ( f : w --> B  /\  { <. z ,  y >. } : { z } --> B )  /\  ( w  i^i 
{ z } )  =  (/) )  ->  (
f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B )
8168, 76, 79, 80syl21anc 1181 . . . . . . . . . . . 12  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( f  u.  { <. z ,  y
>. } ) : ( w  u.  { z } ) --> B )
82 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  w  ps )
83 eleq1a 2385 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  w  ->  (
z  =  x  -> 
z  e.  w ) )
8483necon3bd 2516 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  w  ->  ( -.  z  e.  w  ->  z  =/=  x ) )
8584impcom 419 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  z  e.  w  /\  x  e.  w
)  ->  z  =/=  x )
86 fvunsn 5751 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  x  ->  (
( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x ) )
87 dfsbcq 3027 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x )  -> 
( [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph  <->  [. ( f `
 x )  / 
y ]. ph ) )
8887, 21syl6rbb 253 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  u.  { <. z ,  y >. } ) `  x
)  =  ( f `
 x )  -> 
( ps  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
8985, 86, 883syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( -.  z  e.  w  /\  x  e.  w
)  ->  ( ps  <->  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
9089ralbidva 2593 . . . . . . . . . . . . . . 15  |-  ( -.  z  e.  w  -> 
( A. x  e.  w  ps  <->  A. x  e.  w  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
9177, 90syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( A. x  e.  w  ps  <->  A. x  e.  w  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
9282, 91mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  w  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph )
93 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  [. z  /  x ]. ph )
94 ffun 5429 . . . . . . . . . . . . . . . . 17  |-  ( ( f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B  ->  Fun  ( f  u.  { <. z ,  y >. } ) )
95 ssun2 3373 . . . . . . . . . . . . . . . . . 18  |-  { <. z ,  y >. }  C_  ( f  u.  { <. z ,  y >. } )
9652snid 3701 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
{ z }
9769dmsnop 5184 . . . . . . . . . . . . . . . . . . 19  |-  dom  { <. z ,  y >. }  =  { z }
9896, 97eleqtrri 2389 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
dom  { <. z ,  y
>. }
99 funssfv 5581 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  ( f  u. 
{ <. z ,  y
>. } )  /\  { <. z ,  y >. }  C_  ( f  u. 
{ <. z ,  y
>. } )  /\  z  e.  dom  { <. z ,  y >. } )  ->  ( ( f  u.  { <. z ,  y >. } ) `
 z )  =  ( { <. z ,  y >. } `  z ) )
10095, 98, 99mp3an23 1269 . . . . . . . . . . . . . . . . 17  |-  ( Fun  ( f  u.  { <. z ,  y >. } )  ->  (
( f  u.  { <. z ,  y >. } ) `  z
)  =  ( {
<. z ,  y >. } `  z )
)
10181, 94, 1003syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( (
f  u.  { <. z ,  y >. } ) `
 z )  =  ( { <. z ,  y >. } `  z ) )
10252, 69fvsn 5752 . . . . . . . . . . . . . . . 16  |-  ( {
<. z ,  y >. } `  z )  =  y
103101, 102syl6req 2365 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  y  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  z
) )
104 ralsns 3704 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  _V  ->  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph ) )
10552, 104ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  { z } ph  <->  [. z  /  x ]. ph )
106 elsni 3698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { z }  ->  x  =  z )
107106fveq2d 5567 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  { z }  ->  ( ( f  u.  { <. z ,  y >. } ) `
 x )  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  z
) )
108107eqeq2d 2327 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  { z }  ->  ( y  =  ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  <->  y  =  ( ( f  u.  { <. z ,  y >. } ) `  z
) ) )
109108biimparc 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  /\  x  e.  { z } )  ->  y  =  ( ( f  u.  { <. z ,  y >. } ) `
 x ) )
110 sbceq1a 3035 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 x )  -> 
( ph  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
111109, 110syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  /\  x  e.  { z } )  ->  ( ph 
<-> 
[. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
112111ralbidva 2593 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  -> 
( A. x  e. 
{ z } ph  <->  A. x  e.  { z } [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
113105, 112syl5bbr 250 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( f  u.  { <. z ,  y >. } ) `
 z )  -> 
( [. z  /  x ]. ph  <->  A. x  e.  {
z } [. (
( f  u.  { <. z ,  y >. } ) `  x
)  /  y ]. ph ) )
114103, 113syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( [. z  /  x ]. ph  <->  A. x  e.  { z } [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
11593, 114mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  { z } [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
116 ralun 3391 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  w  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph 
/\  A. x  e.  {
z } [. (
( f  u.  { <. z ,  y >. } ) `  x
)  /  y ]. ph )  ->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
11792, 115, 116syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph )
118 vex 2825 . . . . . . . . . . . . . 14  |-  f  e. 
_V
119 snex 4253 . . . . . . . . . . . . . 14  |-  { <. z ,  y >. }  e.  _V
120118, 119unex 4555 . . . . . . . . . . . . 13  |-  ( f  u.  { <. z ,  y >. } )  e.  _V
121 feq1 5412 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
g : ( w  u.  { z } ) --> B  <->  ( f  u.  { <. z ,  y
>. } ) : ( w  u.  { z } ) --> B ) )
122 fveq1 5562 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
g `  x )  =  ( ( f  u.  { <. z ,  y >. } ) `
 x ) )
123 dfsbcq 3027 . . . . . . . . . . . . . . . 16  |-  ( ( g `  x )  =  ( ( f  u.  { <. z ,  y >. } ) `
 x )  -> 
( [. ( g `  x )  /  y ]. ph  <->  [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph ) )
124122, 123syl 15 . . . . . . . . . . . . . . 15  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  ( [. ( g `  x
)  /  y ]. ph  <->  [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
125124ralbidv 2597 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  ( A. x  e.  (
w  u.  { z } ) [. (
g `  x )  /  y ]. ph  <->  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) )
126121, 125anbi12d 691 . . . . . . . . . . . . 13  |-  ( g  =  ( f  u. 
{ <. z ,  y
>. } )  ->  (
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph )  <->  ( (
f  u.  { <. z ,  y >. } ) : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( ( f  u. 
{ <. z ,  y
>. } ) `  x
)  /  y ]. ph ) ) )
127120, 126spcev 2909 . . . . . . . . . . . 12  |-  ( ( ( f  u.  { <. z ,  y >. } ) : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( ( f  u.  { <. z ,  y >. } ) `
 x )  / 
y ]. ph )  ->  E. g ( g : ( w  u.  {
z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) )
12881, 117, 127syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  /\  ( f : w --> B  /\  A. x  e.  w  ps )
)  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) )
129128ex 423 . . . . . . . . . 10  |-  ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  ->  (
( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
130129exlimdv 1627 . . . . . . . . 9  |-  ( ( -.  z  e.  w  /\  y  e.  B  /\  [. z  /  x ]. ph )  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) )
1311303exp 1150 . . . . . . . 8  |-  ( -.  z  e.  w  -> 
( y  e.  B  ->  ( [. z  /  x ]. ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) ) )
13259, 67, 131rexlimd 2698 . . . . . . 7  |-  ( -.  z  e.  w  -> 
( E. y  e.  B  [. z  /  x ]. ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
13358, 132syl5 28 . . . . . 6  |-  ( -.  z  e.  w  -> 
( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  ( E. f ( f : w --> B  /\  A. x  e.  w  ps )  ->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
134133a2d 23 . . . . 5  |-  ( -.  z  e.  w  -> 
( ( A. x  e.  ( w  u.  {
z } ) E. y  e.  B  ph  ->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) ) ) )
13548, 134syl5 28 . . . 4  |-  ( -.  z  e.  w  -> 
( ( A. x  e.  w  E. y  e.  B  ph  ->  E. f
( f : w --> B  /\  A. x  e.  w  ps )
)  ->  ( A. x  e.  ( w  u.  { z } ) E. y  e.  B  ph 
->  E. g ( g : ( w  u. 
{ z } ) --> B  /\  A. x  e.  ( w  u.  {
z } ) [. ( g `  x
)  /  y ]. ph ) ) ) )
136135adantl 452 . . 3  |-  ( ( w  e.  Fin  /\  -.  z  e.  w
)  ->  ( ( A. x  e.  w  E. y  e.  B  ph 
->  E. f ( f : w --> B  /\  A. x  e.  w  ps ) )  ->  ( A. x  e.  (
w  u.  { z } ) E. y  e.  B  ph  ->  E. g
( g : ( w  u.  { z } ) --> B  /\  A. x  e.  ( w  u.  { z } ) [. ( g `
 x )  / 
y ]. ph ) ) ) )
1376, 12, 30, 36, 44, 136findcard2s 7144 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  E. y  e.  B  ph 
->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) ) )
138137imp 418 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1532    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   E.wrex 2578   _Vcvv 2822   [.wsbc 3025    u. cun 3184    i^i cin 3185    C_ wss 3186   (/)c0 3489   {csn 3674   <.cop 3677   dom cdm 4726   Fun wfun 5286   -->wf 5288   -1-1-onto->wf1o 5291   ` cfv 5292   Fincfn 6906
This theorem is referenced by:  fissuni  7205  fipreima  7206  indexfi  7208  finacn  7722  axcc4dom  8112  ttukeylem6  8186  firest  13386  ablfaclem3  15371  ablfac2  15373  cmpcovf  17174  cmpsub  17183  tgcmp  17184  hauscmplem  17189  ptcnplem  17371  alexsubALTlem3  17795  alexsubALT  17797  tsmsxplem1  17887  ovolicc2lem5  18933  ovolicc2  18934  limciun  19297  cvmliftlem15  24113  comppfsc  25456  istotbnd3  25643  sstotbnd2  25646  sstotbnd  25647  prdsbnd  25665  prdstotbnd  25666  heiborlem1  25683  heibor  25693  kelac1  26309  hbt  26482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-1o 6521  df-er 6702  df-en 6907  df-fin 6910
  Copyright terms: Public domain W3C validator