MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq2 Structured version   Unicode version

Theorem aceq2 8000
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
aceq2  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
Distinct variable group:    x, y, z, w, v, u

Proof of Theorem aceq2
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 df-ral 2710 . . . . 5  |-  ( A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. t ( t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
2 19.23v 1914 . . . . 5  |-  ( A. t ( t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) )  <->  ( E. t  t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
31, 2bitri 241 . . . 4  |-  ( A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  ( E. t  t  e.  z  ->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
4 biidd 229 . . . . 5  |-  ( w  =  t  ->  ( E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
54cbvralv 2932 . . . 4  |-  ( A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. t  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
6 n0 3637 . . . . 5  |-  ( z  =/=  (/)  <->  E. t  t  e.  z )
7 eleq2 2497 . . . . . . . . 9  |-  ( v  =  u  ->  (
z  e.  v  <->  z  e.  u ) )
8 eleq2 2497 . . . . . . . . 9  |-  ( v  =  u  ->  (
w  e.  v  <->  w  e.  u ) )
97, 8anbi12d 692 . . . . . . . 8  |-  ( v  =  u  ->  (
( z  e.  v  /\  w  e.  v )  <->  ( z  e.  u  /\  w  e.  u ) ) )
109cbvrexv 2933 . . . . . . 7  |-  ( E. v  e.  y  ( z  e.  v  /\  w  e.  v )  <->  E. u  e.  y  ( z  e.  u  /\  w  e.  u )
)
1110reubii 2894 . . . . . 6  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  <->  E! w  e.  z  E. u  e.  y  (
z  e.  u  /\  w  e.  u )
)
12 eleq1 2496 . . . . . . . . 9  |-  ( w  =  v  ->  (
w  e.  u  <->  v  e.  u ) )
1312anbi2d 685 . . . . . . . 8  |-  ( w  =  v  ->  (
( z  e.  u  /\  w  e.  u
)  <->  ( z  e.  u  /\  v  e.  u ) ) )
1413rexbidv 2726 . . . . . . 7  |-  ( w  =  v  ->  ( E. u  e.  y 
( z  e.  u  /\  w  e.  u
)  <->  E. u  e.  y  ( z  e.  u  /\  v  e.  u
) ) )
1514cbvreuv 2934 . . . . . 6  |-  ( E! w  e.  z  E. u  e.  y  (
z  e.  u  /\  w  e.  u )  <->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
1611, 15bitri 241 . . . . 5  |-  ( E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )  <->  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
)
176, 16imbi12i 317 . . . 4  |-  ( ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
)  <->  ( E. t 
t  e.  z  ->  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
) ) )
183, 5, 173bitr4i 269 . . 3  |-  ( A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
1918ralbii 2729 . 2  |-  ( A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
2019exbii 1592 1  |-  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  <->  E. y A. z  e.  x  ( z  =/=  (/)  ->  E! w  e.  z  E. v  e.  y  (
z  e.  v  /\  w  e.  v )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    =/= wne 2599   A.wral 2705   E.wrex 2706   E!wreu 2707   (/)c0 3628
This theorem is referenced by:  dfac7  8012  ac3  8342
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-v 2958  df-dif 3323  df-nul 3629
  Copyright terms: Public domain W3C validator