MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq3lem Structured version   Unicode version

Theorem aceq3lem 8006
Description: Lemma for dfac3 8007. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
aceq3lem.1  |-  F  =  ( w  e.  dom  y  |->  ( f `  { u  |  w
y u } ) )
Assertion
Ref Expression
aceq3lem  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
Distinct variable group:    x, y, z, w, u, f
Allowed substitution hints:    F( x, y, z, w, u, f)

Proof of Theorem aceq3lem
Dummy variables  h  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2961 . . . . . 6  |-  y  e. 
_V
21rnex 5136 . . . . 5  |-  ran  y  e.  _V
32pwex 4385 . . . 4  |-  ~P ran  y  e.  _V
4 raleq 2906 . . . . 5  |-  ( x  =  ~P ran  y  ->  ( A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
54exbidv 1637 . . . 4  |-  ( x  =  ~P ran  y  ->  ( E. f A. z  e.  x  (
z  =/=  (/)  ->  (
f `  z )  e.  z )  <->  E. f A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) ) )
63, 5spcv 3044 . . 3  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
7 aceq3lem.1 . . . . . . 7  |-  F  =  ( w  e.  dom  y  |->  ( f `  { u  |  w
y u } ) )
8 df-mpt 4271 . . . . . . 7  |-  ( w  e.  dom  y  |->  ( f `  { u  |  w y u }
) )  =  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  ( f `  { u  |  w y u }
) ) }
97, 8eqtri 2458 . . . . . 6  |-  F  =  { <. w ,  h >.  |  ( w  e. 
dom  y  /\  h  =  ( f `  { u  |  w
y u } ) ) }
10 vex 2961 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
1110eldm 5070 . . . . . . . . . . . . . 14  |-  ( w  e.  dom  y  <->  E. u  w y u )
12 abn0 3648 . . . . . . . . . . . . . 14  |-  ( { u  |  w y u }  =/=  (/)  <->  E. u  w y u )
1311, 12bitr4i 245 . . . . . . . . . . . . 13  |-  ( w  e.  dom  y  <->  { u  |  w y u }  =/=  (/) )
14 vex 2961 . . . . . . . . . . . . . . . . 17  |-  u  e. 
_V
1510, 14brelrn 5103 . . . . . . . . . . . . . . . 16  |-  ( w y u  ->  u  e.  ran  y )
1615abssi 3420 . . . . . . . . . . . . . . 15  |-  { u  |  w y u }  C_ 
ran  y
172elpw2 4367 . . . . . . . . . . . . . . 15  |-  ( { u  |  w y u }  e.  ~P ran  y  <->  { u  |  w y u }  C_  ran  y )
1816, 17mpbir 202 . . . . . . . . . . . . . 14  |-  { u  |  w y u }  e.  ~P ran  y
19 neeq1 2611 . . . . . . . . . . . . . . . 16  |-  ( z  =  { u  |  w y u }  ->  ( z  =/=  (/)  <->  { u  |  w y u }  =/=  (/) ) )
20 fveq2 5731 . . . . . . . . . . . . . . . . 17  |-  ( z  =  { u  |  w y u }  ->  ( f `  z
)  =  ( f `
 { u  |  w y u }
) )
21 id 21 . . . . . . . . . . . . . . . . 17  |-  ( z  =  { u  |  w y u }  ->  z  =  { u  |  w y u }
)
2220, 21eleq12d 2506 . . . . . . . . . . . . . . . 16  |-  ( z  =  { u  |  w y u }  ->  ( ( f `  z )  e.  z  <-> 
( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2319, 22imbi12d 313 . . . . . . . . . . . . . . 15  |-  ( z  =  { u  |  w y u }  ->  ( ( z  =/=  (/)  ->  ( f `  z )  e.  z )  <->  ( { u  |  w y u }  =/=  (/)  ->  ( f `  { u  |  w y u } )  e.  { u  |  w y u }
) ) )
2423rspcv 3050 . . . . . . . . . . . . . 14  |-  ( { u  |  w y u }  e.  ~P ran  y  ->  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  ( { u  |  w
y u }  =/=  (/) 
->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) ) )
2518, 24ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  ( { u  |  w
y u }  =/=  (/) 
->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2613, 25syl5bi 210 . . . . . . . . . . . 12  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
w  e.  dom  y  ->  ( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } ) )
2726imp 420 . . . . . . . . . . 11  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  -> 
( f `  {
u  |  w y u } )  e. 
{ u  |  w y u } )
28 fvex 5745 . . . . . . . . . . . 12  |-  ( f `
 { u  |  w y u }
)  e.  _V
29 breq2 4219 . . . . . . . . . . . 12  |-  ( z  =  ( f `  { u  |  w
y u } )  ->  ( w y z  <->  w y ( f `  { u  |  w y u }
) ) )
30 breq2 4219 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
w y u  <->  w y
z ) )
3130cbvabv 2557 . . . . . . . . . . . 12  |-  { u  |  w y u }  =  { z  |  w y z }
3228, 29, 31elab2 3087 . . . . . . . . . . 11  |-  ( ( f `  { u  |  w y u }
)  e.  { u  |  w y u }  <->  w y ( f `  { u  |  w
y u } ) )
3327, 32sylib 190 . . . . . . . . . 10  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  ->  w y ( f `
 { u  |  w y u }
) )
34 breq2 4219 . . . . . . . . . 10  |-  ( h  =  ( f `  { u  |  w
y u } )  ->  ( w y h  <->  w y ( f `  { u  |  w y u }
) ) )
3533, 34syl5ibrcom 215 . . . . . . . . 9  |-  ( ( A. z  e.  ~P  ran  y ( z  =/=  (/)  ->  ( f `  z )  e.  z )  /\  w  e. 
dom  y )  -> 
( h  =  ( f `  { u  |  w y u }
)  ->  w y
h ) )
3635expimpd 588 . . . . . . . 8  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  (
( w  e.  dom  y  /\  h  =  ( f `  { u  |  w y u }
) )  ->  w
y h ) )
3736ssopab2dv 4486 . . . . . . 7  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  (
f `  { u  |  w y u }
) ) }  C_  {
<. w ,  h >.  |  w y h }
)
38 opabss 4272 . . . . . . 7  |-  { <. w ,  h >.  |  w y h }  C_  y
3937, 38syl6ss 3362 . . . . . 6  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  { <. w ,  h >.  |  ( w  e.  dom  y  /\  h  =  (
f `  { u  |  w y u }
) ) }  C_  y )
409, 39syl5eqss 3394 . . . . 5  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  F  C_  y )
4128, 7fnmpti 5576 . . . . 5  |-  F  Fn  dom  y
421ssex 4350 . . . . . . 7  |-  ( F 
C_  y  ->  F  e.  _V )
4342adantr 453 . . . . . 6  |-  ( ( F  C_  y  /\  F  Fn  dom  y )  ->  F  e.  _V )
44 sseq1 3371 . . . . . . . 8  |-  ( g  =  F  ->  (
g  C_  y  <->  F  C_  y
) )
45 fneq1 5537 . . . . . . . 8  |-  ( g  =  F  ->  (
g  Fn  dom  y  <->  F  Fn  dom  y ) )
4644, 45anbi12d 693 . . . . . . 7  |-  ( g  =  F  ->  (
( g  C_  y  /\  g  Fn  dom  y )  <->  ( F  C_  y  /\  F  Fn  dom  y ) ) )
4746spcegv 3039 . . . . . 6  |-  ( F  e.  _V  ->  (
( F  C_  y  /\  F  Fn  dom  y )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) ) )
4843, 47mpcom 35 . . . . 5  |-  ( ( F  C_  y  /\  F  Fn  dom  y )  ->  E. g ( g 
C_  y  /\  g  Fn  dom  y ) )
4940, 41, 48sylancl 645 . . . 4  |-  ( A. z  e.  ~P  ran  y
( z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
5049exlimiv 1645 . . 3  |-  ( E. f A. z  e. 
~P  ran  y (
z  =/=  (/)  ->  (
f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
516, 50syl 16 . 2  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. g
( g  C_  y  /\  g  Fn  dom  y ) )
52 sseq1 3371 . . . 4  |-  ( g  =  f  ->  (
g  C_  y  <->  f  C_  y ) )
53 fneq1 5537 . . . 4  |-  ( g  =  f  ->  (
g  Fn  dom  y  <->  f  Fn  dom  y ) )
5452, 53anbi12d 693 . . 3  |-  ( g  =  f  ->  (
( g  C_  y  /\  g  Fn  dom  y )  <->  ( f  C_  y  /\  f  Fn 
dom  y ) ) )
5554cbvexv 1986 . 2  |-  ( E. g ( g  C_  y  /\  g  Fn  dom  y )  <->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
5651, 55sylib 190 1  |-  ( A. x E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )  ->  E. f
( f  C_  y  /\  f  Fn  dom  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   _Vcvv 2958    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   class class class wbr 4215   {copab 4268    e. cmpt 4269   dom cdm 4881   ran crn 4882    Fn wfn 5452   ` cfv 5457
This theorem is referenced by:  dfac3  8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
  Copyright terms: Public domain W3C validator