MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Unicode version

Theorem ackbij1lem15 7905
Description: Lemma for ackbij1 7909. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1lem15  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  ( F `  ( A  i^i  suc  c )
)  =  ( F `
 ( B  i^i  suc  c ) ) )
Distinct variable groups:    F, c, x, y    A, c, x, y    B, c, x, y

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 961 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  om )
2 ackbij1lem3 7893 . . . . . . 7  |-  ( c  e.  om  ->  c  e.  ( ~P om  i^i  Fin ) )
31, 2syl 15 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  ( ~P om  i^i  Fin ) )
4 simpr3 963 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  c  e.  B )
5 ackbij1lem1 7891 . . . . . . . 8  |-  ( -.  c  e.  B  -> 
( B  i^i  suc  c )  =  ( B  i^i  c ) )
64, 5syl 15 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  suc  c )  =  ( B  i^i  c ) )
7 inss2 3424 . . . . . . . 8  |-  ( B  i^i  c )  C_  c
87a1i 10 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  c )  C_  c )
96, 8eqsstrd 3246 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( B  i^i  suc  c )  C_  c )
10 ackbij.f . . . . . . 7  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
1110ackbij1lem12 7902 . . . . . 6  |-  ( ( c  e.  ( ~P
om  i^i  Fin )  /\  ( B  i^i  suc  c )  C_  c
)  ->  ( F `  ( B  i^i  suc  c ) )  C_  ( F `  c ) )
123, 9, 11syl2anc 642 . . . . 5  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C_  ( F `  c ) )
1310ackbij1lem10 7900 . . . . . . . . . 10  |-  F :
( ~P om  i^i  Fin ) --> om
1413ffvelrni 5702 . . . . . . . . 9  |-  ( c  e.  ( ~P om  i^i  Fin )  ->  ( F `  c )  e.  om )
15 nnon 4699 . . . . . . . . 9  |-  ( ( F `  c )  e.  om  ->  ( F `  c )  e.  On )
163, 14, 153syl 18 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  e.  On )
17 onpsssuc 4647 . . . . . . . 8  |-  ( ( F `  c )  e.  On  ->  ( F `  c )  C.  suc  ( F `  c ) )
1816, 17syl 15 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  suc  ( F `  c ) )
1910ackbij1lem14 7904 . . . . . . . . 9  |-  ( c  e.  om  ->  ( F `  { c } )  =  suc  ( F `  c ) )
201, 19syl 15 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  { c } )  =  suc  ( F `  c ) )
2120psseq2d 3303 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  (
( F `  c
)  C.  ( F `  { c } )  <-> 
( F `  c
)  C.  suc  ( F `
 c ) ) )
2218, 21mpbird 223 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  ( F `  {
c } ) )
23 simpll 730 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  A  e.  ( ~P om  i^i  Fin ) )
24 inss1 3423 . . . . . . . . 9  |-  ( A  i^i  suc  c )  C_  A
2524a1i 10 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  C_  A )
2610ackbij1lem11 7901 . . . . . . . 8  |-  ( ( A  e.  ( ~P
om  i^i  Fin )  /\  ( A  i^i  suc  c )  C_  A
)  ->  ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin ) )
2723, 25, 26syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin ) )
28 ssun1 3372 . . . . . . . 8  |-  { c }  C_  ( {
c }  u.  ( A  i^i  c ) )
29 simpr2 962 . . . . . . . . 9  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  c  e.  A )
30 ackbij1lem2 7892 . . . . . . . . 9  |-  ( c  e.  A  ->  ( A  i^i  suc  c )  =  ( { c }  u.  ( A  i^i  c ) ) )
3129, 30syl 15 . . . . . . . 8  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( A  i^i  suc  c )  =  ( { c }  u.  ( A  i^i  c ) ) )
3228, 31syl5sseqr 3261 . . . . . . 7  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  { c }  C_  ( A  i^i  suc  c ) )
3310ackbij1lem12 7902 . . . . . . 7  |-  ( ( ( A  i^i  suc  c )  e.  ( ~P om  i^i  Fin )  /\  { c } 
C_  ( A  i^i  suc  c ) )  -> 
( F `  {
c } )  C_  ( F `  ( A  i^i  suc  c )
) )
3427, 32, 33syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  { c } )  C_  ( F `  ( A  i^i  suc  c ) ) )
35 psssstr 3316 . . . . . 6  |-  ( ( ( F `  c
)  C.  ( F `  { c } )  /\  ( F `  { c } ) 
C_  ( F `  ( A  i^i  suc  c
) ) )  -> 
( F `  c
)  C.  ( F `  ( A  i^i  suc  c ) ) )
3622, 34, 35syl2anc 642 . . . . 5  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  c )  C.  ( F `  ( A  i^i  suc  c )
) )
37 sspsstr 3315 . . . . 5  |-  ( ( ( F `  ( B  i^i  suc  c )
)  C_  ( F `  c )  /\  ( F `  c )  C.  ( F `  ( A  i^i  suc  c )
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C.  ( F `  ( A  i^i  suc  c
) ) )
3812, 36, 37syl2anc 642 . . . 4  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) ) 
C.  ( F `  ( A  i^i  suc  c
) ) )
39 pssne 3306 . . . 4  |-  ( ( F `  ( B  i^i  suc  c )
)  C.  ( F `  ( A  i^i  suc  c ) )  -> 
( F `  ( B  i^i  suc  c )
)  =/=  ( F `
 ( A  i^i  suc  c ) ) )
4038, 39syl 15 . . 3  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( B  i^i  suc  c ) )  =/=  ( F `  ( A  i^i  suc  c
) ) )
4140necomd 2562 . 2  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  ( F `  ( A  i^i  suc  c ) )  =/=  ( F `  ( B  i^i  suc  c
) ) )
4241neneqd 2495 1  |-  ( ( ( A  e.  ( ~P om  i^i  Fin )  /\  B  e.  ( ~P om  i^i  Fin ) )  /\  (
c  e.  om  /\  c  e.  A  /\  -.  c  e.  B
) )  ->  -.  ( F `  ( A  i^i  suc  c )
)  =  ( F `
 ( B  i^i  suc  c ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479    u. cun 3184    i^i cin 3185    C_ wss 3186    C. wpss 3187   ~Pcpw 3659   {csn 3674   U_ciun 3942    e. cmpt 4114   Oncon0 4429   suc csuc 4431   omcom 4693    X. cxp 4724   ` cfv 5292   Fincfn 6906   cardccrd 7613
This theorem is referenced by:  ackbij1lem16  7906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-card 7617  df-cda 7839
  Copyright terms: Public domain W3C validator